elife-83654-v1 - Tecnologia de Alimentos (2025)

Prévia do material em texto

<p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 1 of 67</p><p>The integrated brain network that</p><p>controlsrespiration</p><p>Friedrich Krohn1, Manuele Novello1, Ruben S van der Giessen2,</p><p>Chris I De Zeeuw1,3*, Johan JM Pel1*, Laurens WJ Bosman1*</p><p>1Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands; 2Department</p><p>of Neurology, Erasmus MC, Rotterdam, Netherlands; 3Netherlands Institute for</p><p>Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands</p><p>Abstract Respiration is a brain function on which our lives essentially depend. Control of respi-</p><p>ration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In</p><p>addition, the respiratory control network of the brain has to organize muscular synergies that inte-</p><p>grate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular</p><p>function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem</p><p>central pattern generator circuit in a larger network that also comprises the cerebellum. Although</p><p>currently not generally recognized as a respiratory control center, the cerebellum is well known</p><p>for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic</p><p>nervous system. In this review, we discuss the role of brain regions involved in the control of respira-</p><p>tion, and their anatomical and functional interactions. We discuss how sensory feedback can result in</p><p>adaptation of respiration, and how these mechanisms can be compromised by various neurological</p><p>and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part</p><p>of a larger and integrated network of respiratory brain regions.</p><p>Introduction</p><p>From the first cry to the last gasp, the respiratory system should never fail to supply sufficient oxygen</p><p>to meet metabolic demands during every possible event throughout life (Del Negro etal., 2018). The</p><p>respiratory pattern is not only determined by physical activity, but also reflects the emotional state,</p><p>and volitional control of respiration can be used to alter affection and reduce stress (Suess etal.,</p><p>1980; Philippot etal., 2002; Arch and Craske, 2006; Seppälä etal., 2014; Szulczewski, 2019).</p><p>Indeed, multiple behaviors, such as swimming, playing musical instruments, parturition, or medita-</p><p>tion depend on precise respiratory control (Brown and Gerbarg, 2009; Jakovljevic and McConnell,</p><p>2009; Bartlett and Leiter, 2012; Holstege, 2014; Sakaguchi and Aiba, 2016), and for many sports</p><p>and arts, it is often the control of respiration that separates mediocre from top performance (Mahler</p><p>etal., 1991; Phillips and Aitchison, 1997; Laczika etal., 2013; Salomoni etal., 2016). Thus, indeed,</p><p>respiratory control affects all aspects of life.</p><p>Although control over respiration can be voluntary, most of it is subconscious, even during volun-</p><p>tary respiration. In this review, we discuss the integrated network of brain regions most involved in</p><p>the control of respiration, their connections, and possible clinical consequences of their pathology.</p><p>Throughout, we discuss how respiratory control and other motor and non- motor systems interact.</p><p>Respiratory muscles and their motor neurons</p><p>Despite their vast differences in body size and ecological niches, mammals possess similar basic</p><p>mechanics of ventilation, with some variations between species or sexes (Carvalho and Gonçalves,</p><p>2011; Torres- Tamayo etal., 2018). Both lung and tidal volumes scale linearly with body weight, and</p><p>REVIEW ARTICLE</p><p>*For correspondence:</p><p>c.dezeeuw@erasmusmc.nl</p><p>(CIDZ);</p><p>j.pel@erasmusmc.nl (JJMP);</p><p>l.bosman@erasmusmc.nl (LWJB)</p><p>Competing interest: The authors</p><p>declare that no competing</p><p>interests exist.</p><p>Funding: See page 35</p><p>Received: 03 October 2022</p><p>Accepted: 29 January 2023</p><p>Published: 08 March 2023</p><p>Reviewing Editor: Jeannie Chin,</p><p>Baylor College of Medicine,</p><p>United States</p><p>Copyright Krohn etal. This</p><p>article is distributed under the</p><p>terms of the Creative Commons</p><p>Attribution License, which</p><p>permits unrestricted use and</p><p>redistribution provided that the</p><p>original author and source are</p><p>credited.</p><p>https://en.wikipedia.org/wiki/Open_access</p><p>https://creativecommons.org/</p><p>https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking</p><p>https://doi.org/10.7554/eLife.83654</p><p>mailto:c.dezeeuw@erasmusmc.nl</p><p>mailto:j.pel@erasmusmc.nl</p><p>mailto:l.bosman@erasmusmc.nl</p><p>http://creativecommons.org/licenses/by/4.0/</p><p>http://creativecommons.org/licenses/by/4.0/</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 2 of 67</p><p>the higher metabolic rate of smaller mammals is accounted for by a faster respiratory rate (Stahl,</p><p>1967; Boggs and Tenney, 1984). The force required for inspiration is delivered by so- called pump</p><p>muscles that expand the rib cage. The diaphragm and external intercostal muscles are the most prom-</p><p>inent inspiratory pump muscles, but also parasternal intercostal, sternocleidomastoid and scalene</p><p>muscles can act as such (De Troyer and Estenne, 1984; De Troyer etal., 1998; De Troyer etal.,</p><p>2005; Torres- Tamayo etal., 2018; Welch etal., 2019; LoMauro and Aliverti, 2021). During active</p><p>expiration, expiratory pump muscles, in particular the internal intercostal and abdominal muscles, are</p><p>active (De Troyer etal., 2005; Mortola, 2013; Welch etal., 2019). The diaphragm is under control</p><p>of motor neurons in the phrenic nucleus located in the anterior ramus of the third to sixth cervical</p><p>vertebrae (Wertheimer, 1886; Hollinshead and Keswani, 1956; Wu etal., 2017). The intercostal and</p><p>abdominal muscles are innervated from the thoracic spinal cord (Figure1A–C).</p><p>Valve muscles regulate the air flow by adjusting the resistance of the upper airways. Activity of</p><p>the facial nucleus can lead to opening of the nasal valve, via the dilator naris anterior muscle and the</p><p>alar part of the nasal muscle (van Dishoeck, 1937; Strohl, 1985; Vaiman etal., 2003). Contractions</p><p>of these muscles do not only facilitate inspiration, but can also relate to sniffing (Welker, 1964). Just</p><p>before the start of inspiration, motor neurons of the hypoglossal nucleus activate tongue muscles,</p><p>reducing collapsibility of the pharynx (Fuller etal., 1999; Gestreau etal., 2005). Indeed, tongue</p><p>deformation, for example as a consequence of excessive fat depositions in obesity, can be related to</p><p>obstructive sleep apnea (Lowe etal., 1986; Kim etal., 2014; Yu etal., 2021). Activation of the trigem-</p><p>inal motor nucleus can contribute to jaw movements (Mong etal., 1988). Finally, contractions of the</p><p>larynx muscles show a bimodal pattern; initially, they are dilated to allow airflow into the lungs, while</p><p>at the end of inspiration these muscles contract to reduce the outflow of air, prolonging the period</p><p>of gas exchange (Gesell and White, 1938; Gautier etal., 1973; Insalaco etal., 1991; Hutchison</p><p>etal., 1993; Amis etal., 1995; Dutschmann etal., 2014). Laryngeal constriction is controlled by the</p><p>nucleus ambiguus via the vagus nerve (Dutschmann etal., 2014). The nucleus ambiguus houses also</p><p>motor neurons controlling swallowing, the control of which is strongly coupled to that of respiration</p><p>(McFarland and Lund, 1993; Moore etal., 2014).</p><p>Respiratory muscles typically serve multiple functions. Rib cage muscles, for instance, control</p><p>both respiration and arm movements, so that locomotion and respiration are tightly coupled during</p><p>quadrupedal locomotion. Indeed, one could argue that the change from quadrupedal to bipedal loco-</p><p>motion during hominid evolution paved the way for the intricate breathing control required for human</p><p>speech (Carrier, 1984; MacLarnon and Hewitt, 1999).</p><p>Functional anatomy of respiratory control</p><p>Below, we describe the brain areas most involved in subconscious control of respiration, and their</p><p>main connections. Most of these pathways are bilateral, but ipsi- and contralateral projections can</p><p>al., 2011; McDe-</p><p>vitt etal., 2014). Descending projections target the hypoglossal, trigeminal and facial motor nuclei</p><p>(Li etal., 1993; Guo etal., 2020), retrotrapezoid nucleus (Rosin etal., 2006), locus coeruleus (Luppi</p><p>etal., 1995; Schwarz etal., 2015), periaqueductal gray (Vertes, 1991), and PPTg (Vertes, 1991;</p><p>Steininger etal., 1992; Figure6B).</p><p>The dorsal raphe nucleus receives input from many areas, with relatively dense projections orig-</p><p>inating in the cerebral cortex, lateral, paraventricular and dorsomedial hypothalamus, bed nucleus</p><p>of the stria terminalis, central amygdala, periaqueductal gray, lateral and medial parabrachial nuclei,</p><p>Kölliker- Fuse nucleus, NTS, locus coeruleus, and vestibular nuclei (Jones and Yang, 1985; Peyron</p><p>etal., 1998a; Pollak Dorocic etal., 2014; Weissbourd etal., 2014; Peyron etal., 2018; Shi etal.,</p><p>2021). In addition, also the cerebellar nuclei project to the dorsal raphe nucleus, but this projection</p><p>seems to be relatively sparse (Teune etal., 2000; Weissbourd etal., 2014).</p><p>The caudal, or medullary, raphe nuclei can also directly affect respiration (Lalley, 1986; Ptak etal.,</p><p>2009; Depuy etal., 2011; Sabino etal., 2021). The caudal raphe nuclei exist of the raphe magnus,</p><p>raphe obscurus, and raphe pallidus, and contain serotonergic, non- serotonergic and mixed neurons</p><p>(Pilowsky, 2014; Figure6A). Accordingly, neural responses of neurons in the caudal raphe are hetero-</p><p>geneous and hypercapnic acidosis can activate some, and inhibit other neurons of the caudal raphe</p><p>(Richerson, 1995; Wang et al., 1998), the former category comprising serotonergic neurons, the</p><p>latter not (Wang etal., 2001; Taylor etal., 2005).</p><p>Egr2- Pet1- expressing serotonergic neurons of the raphe magnus mediate the respiratory CO2</p><p>chemoreflex (Brust etal., 2014). These chemoreceptor neurons target predominantly other chemo-</p><p>receptor areas in the brainstem: the retrotrapezoid nucleus, NTS, locus coeruleus, pre- Bötzinger</p><p>complex and medial parabrachial nucleus (Brust et al., 2014). Tac1- Pet1- expressing serotonergic</p><p>neurons of the raphe obscurus do not express chemoreceptor properties themselves, but are most</p><p>likely downstream of Egr2- Pet1 neurons and preferentially innervate motor nuclei, including the</p><p>phrenic, facial, trigeminal, hypoglossal, and ambiguus nucleus, but also the pre- Bötzinger complex</p><p>and NTS (Hennessy etal., 2017).</p><p>Lateral hypothalamus</p><p>Orexinergic neurons of the lateral hypothalamus are the only neurons of the diencephalon with central</p><p>chemoreceptor properties (Williams etal., 2007; Song etal., 2012b; Li etal., 2013; Fukushi etal.,</p><p>2019; Wang etal., 2021). Orexins, neuropeptides exclusively produced by the lateral and posterior</p><p>hypothalamus, are distributed widely throughout the brain and promote wakefulness (de Lecea etal.,</p><p>1998; Peyron etal., 1998b; Hagan etal., 1999; Adamantidis etal., 2007; Berteotti etal., 2021).</p><p>The activity of orexinergic neurons is largely restricted to the awake state (Mileykovskiy etal., 2005),</p><p>and dysfunction of the orexinergic system can cause narcolepsy (Thannickal etal., 2000; Bassetti</p><p>etal., 2019; Berteotti etal., 2021).</p><p>Orexins can also mediate respiratory chemoreflex responses and increase the tidal volume (Young</p><p>etal., 2005; Zhang etal., 2005; Deng etal., 2007). To this end, orexinergic fibers innervate the</p><p>they occur preferably just after the onset of expiration (downward phase of the blue trace). Simple spike firing is increased during the last phase of</p><p>expiration, as illustrated by their instantaneous frequency (magenta curve). The duration of this fragment is 3.6s. (D) For this Purkinje cell, the simple</p><p>spike frequency is upregulated at the last phase of respiration, compared to the expected frequency (grey circle). 0=start inspiration. (E) Optogenetic</p><p>stimulation of Purkinje cells in the lateral cerebellum can shorten the interval until the next inspiration. (F) In the absence of excitatory output of</p><p>the cerebellar nuclei, in the Atoh1- En1/2mouse model for cerebellar neuropathology, the respiratory cycle is more regular than in control mice, as</p><p>quantified by the local coefficient of variation (CV2). fMRI scans indicate that specific brain regions, including the cerebellum, are activated during</p><p>respiratory challenges: (G) Increasing respiratory resistance. (H) Hypoxia (13% oxygen for 1min). (I) Actively slowed breathing. (J) During breath holding,</p><p>the cerebellum is not activated. * p<0.05 Scaling of activity levels in G: –6.7 to –3.1 (blue colors) and+3.1to+8.5 (red colors); in H- J: 0–15. Panels C and</p><p>D are modified from Figure 1 from Romano etal., 2020, E from Figure 6 from Romano etal., 2020, F from Figure 4 from Taylor etal., 2022, and H</p><p>and I from Figure 4 from Critchley etal., 2015.</p><p>© 2013, Elsevier. Panel G is reproduced from Figure 2 from Raux etal., 2013, with permission from Elsevier; this panel is not covered by the CC- BY</p><p>4.0 license and further reproduction of these panels would need permission from the copyright holder.</p><p>© 2008, Elsevier. Panel J is reproduced from Figure 4 from McKay etal., 2008, with permission from Elsevier; this panel is not covered by the CC- BY</p><p>4.0 license and further reproduction of these panels would need permission from the copyright holder.</p><p>Figure 6 continued</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 19 of 67</p><p>phrenic (Young etal., 2005) and hypoglossal nuclei (Fung etal., 2001; Guo etal., 2020). Other</p><p>targets include the pre- Bötzinger complex (Young et al., 2005; Yang et al., 2020; Trevizan- Baú</p><p>etal., 2021a), Kölliker- Fuse nucleus (Peyron etal., 1998b; Yokota etal., 2016; Trevizan- Baú etal.,</p><p>2021a), retrotrapezoid nucleus (Rosin etal., 2006), NTS (Peyron etal., 1998b; Gasparini etal.,</p><p>2020), locus coeruleus (Luppi et al., 1995; Peyron et al., 1998b; Hagan et al., 1999; Schwarz</p><p>etal., 2015), dorsal and caudal raphe nuclei (Lee etal., 2003; Lee etal., 2005; Ogawa etal., 2014;</p><p>Weissbourd etal., 2014), bed nucleus of the stria terminalis (Shin etal., 2008; Ni etal., 2016),</p><p>central amygdala (Peyron etal., 1998b; Fu etal., 2020), periaqueductal gray (Peyron etal., 1998b;</p><p>Trevizan- Baú etal., 2021a), and PPTg (Semba and Fibiger, 1992; Steininger etal., 1992). There is</p><p>also widespread innervation of the cerebellar cortex and nuclei, in particular of the fastigial nucleus</p><p>(Dietrichs, 1984; Ciriello and Caverson, 2014; Çavdar etal., 2018a).</p><p>Orexinergic cells of the lateral hypothalamus receive input from other areas of the hypothalamus,</p><p>including the paraventricular and dorsomedial nuclei, and from the bed nucleus of the stria terminalis,</p><p>central amygdala, periaqueductal gray, dorsal raphe nucleus, and lateral parabrachial nucleus (Yoshida</p><p>etal., 2006; Arima etal., 2019). Other studies revealed input from the pre- Bötzinger complex (Yang</p><p>and Feldman, 2018), NTS (McGovern et al., 2015b; Kawai, 2018), locus coeruleus (Jones and</p><p>Moore, 1977), medial parabrachial nucleus (Saper and Loewy, 1980; Fulwiler and Saper, 1984;</p><p>Moga etal., 1990; Bianchi etal., 1998), PPTg (Woolf and Butcher, 1986), cerebellar interposed</p><p>nucleus (Lu etal., 2015), and cerebellar dentate nucleus (Teune etal., 2000).</p><p>Fastigial nucleus</p><p>Electrical or chemical stimulation of the rostral part of the cerebellar fastigial nucleus can affect the</p><p>respiratory pattern (Bassal and Bianchi, 1982; Lutherer and Williams, 1986; Williams etal., 1989;</p><p>Xu and Frazier, 1995; Xu and Frazier, 2000; Xu etal., 2001b; Xu and Frazier, 2002; Hernandez</p><p>etal., 2004). Furthermore, bilateral lesions of the fastigial nucleus suppressed spontaneous breathing</p><p>in anesthetized cats (Williams etal., 1986). This effect was likely to be specific, as bilateral lesions of</p><p>the cerebellar dentate nuclei had no impact of spontaneous breathing in that same study. An impact</p><p>of anesthesia cannot be excluded, though,</p><p>as this result could not be reproduced in awake goats</p><p>(Martino et al., 2007). In contrast, the latter study describes a reduction in hypercapnia- induced</p><p>increases in ventilation following bilateral lesioning of the fastigial nucleus, suggesting that the impact</p><p>of the fastigial nucleus becomes especially apparent during periods with increased pCO2. Neural</p><p>recordings demonstrated activity patterns in phase with respiration at rest, but in particular during</p><p>respiratory challenges such as tracheal occlusion, bilateral carotid occlusion, or injection of sodium</p><p>cyanide (Lutherer etal., 1989; Xu and Frazier, 1997; Xu and Frazier, 2002; Lu etal., 2013). Thus,</p><p>the evidence converges on a role for the fastigial nucleus in mediating ventilatory responses to hyper-</p><p>capnia. The other two cerebellar nuclei lack the chemoreceptor abilities of the fastigial nucleus (Xu</p><p>etal., 2001a; Xu and Frazier, 2002), and putative other roles of the interposed and dentate nuclei in</p><p>respiratory control have not been extensively studied. However, electrical stimulation of these nuclei</p><p>seemed to promote expiration (Farber, 1987; Huang etal., 1993), indicating a more widespread</p><p>involvement of the cerebellum in respiratory control. The connections to and from the fastigial nucleus</p><p>are described in the section on the cerebellum.</p><p>Other sensory areas</p><p>Paratrigeminal nucleus</p><p>The NTS and the paratrigeminal nucleus together form the main entrances of vagal sensory input, and</p><p>the paratrigeminal nucleus receives mainly input from the proximal airways via the jugular ganglion</p><p>(Driessen et al., 2015; McGovern et al., 2015a; McGovern et al., 2015b). The paratrigeminal</p><p>nucleus also receives primary sensory input from the trigeminal, glossopharyngeal and lingual nerves,</p><p>and from the upper cervical cord (Saxon and Hopkins, 2006; Panneton etal., 2017; Driessen, 2019).</p><p>The strongest projections from the paratrigeminal nucleus target the NTS and the lateral and</p><p>medial parabrachial nucleus, often involving collateral projections (Menétrey etal., 1987; Saxon and</p><p>Hopkins, 1998; Caous etal., 2001; de Sousa Buck etal., 2001; McGovern etal., 2015b; Driessen</p><p>etal., 2018; Hashimoto etal., 2018). Other targets are the Kölliker- Fuse nucleus, ambiguus nucleus,</p><p>periaqueductal gray, spinal trigeminal nucleus, and inferior olive (Caous etal., 2001; de Sousa Buck</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 20 of 67</p><p>etal., 2001; McGovern etal., 2015b; Driessen etal., 2018). A projection to the cerebellum has</p><p>been described (Somana and Walberg, 1979b), but this has later been questioned (Menétrey etal.,</p><p>1987).</p><p>Spinal trigeminal nucleus</p><p>The trigeminal nerve conveys sensory input from the face and terminates in the sensory trigeminal</p><p>nuclei that consist of a primary and a spinal nucleus. The spinal nucleus appears particularly relevant</p><p>for respiratory control, receiving not only tactile information, for example, from the mystacial vibrissae</p><p>(Bosman etal., 2011), but also olfactory input from the nasal mucosa, bypassing the forebrain olfac-</p><p>tory system (Doty etal., 1978; Anton and Peppel, 1991; Schaefer etal., 2002). Stimulation of the</p><p>trigeminal olfactory system can lead to sniffs and respiratory depression without involvement of the</p><p>forebrain (Pérez de Los Cobos Pallares etal., 2016). Activation of the trigeminal olfactory system</p><p>occurs mainly by noxious or irritable gasses, and the resultant respiratory depression is supposed to</p><p>protect the lungs, and may contribute to the diving reflex (Panneton, 2013).</p><p>The anterior ethmoidal nerve, the branchlet of the trigeminal nerve that innervates the nasal</p><p>mucosa, terminates in the interpolar and caudal subnuclei of the spinal trigeminal nucleus (Anton</p><p>and Peppel, 1991; Panneton etal., 2006). From these regions, projections target the pre- Bötzinger</p><p>complex, Kölliker- Fuse nucleus, NTS and lateral parabrachial nucleus (Panneton etal., 2006; Zhang</p><p>etal., 2018), as well as the facial nucleus (Panneton etal., 2006), lateral parafacial nucleus (Bian-</p><p>cardi etal., 2021), cVRG (Li etal., 2021), medial parabrachial nucleus (Hashimoto etal., 2018),</p><p>and periaqueductal gray (Wiberg etal., 1986; Beitz, 1989). In addition, there is direct output to</p><p>the cerebellum (Van Ham and Yeo, 1992; Fu etal., 2011; Henschke and Pakan, 2020) and inferior</p><p>olive (Swenson and Castro, 1983b; Huerta etal., 1985; Molinari etal., 1996; Yatim etal., 1996;</p><p>Panneton etal., 2006). The latter is also indirectly targeted via the MDJ (Kubo etal., 2018).</p><p>Premotor areas</p><p>Although direct projections from central pattern generators and respiratory sensory areas to motor</p><p>neurons do exist, it is likely that indirect pathways via premotor areas are more prominent.</p><p>Retroambiguus nucleus</p><p>The Bötzinger and pre- Bötzinger complexes form a cell column in the ventrolateral medulla that</p><p>continues caudally until the first cervical spinal segment. Caudal to the pre- Bötzinger complex is</p><p>the retroambiguus nucleus that houses inspiratory premotor neurons in its rostral part and expira-</p><p>tory premotor neurons in its caudal part (Merrill, 1970). The respiratory neurons of the retroam-</p><p>biguus nucleus have later been termed the ventral respiratory group. Somewhat confusingly, some</p><p>authors use the terms retroambiguus nucleus and ventral respiratory group as synonyms (Shannon</p><p>and Freeman, 1981), while others refer to the retroambiguus nucleus specifically as the cVRG (Subra-</p><p>manian and Holstege, 2009), or consider the retroambiguus nucleus and cVRG as overlapping areas</p><p>within the caudal medullary reticular formation (Jones etal., 2016). For the purpose of this review,</p><p>we use the terms rVRG for the inspiratory and cVRG for the expiratory part of the ventral respiratory</p><p>column.</p><p>Rostral ventral respiratory group</p><p>The rVRG provides monosynaptic input to the phrenic motor nucleus, and is the most prominent inter-</p><p>mediate between the pre- Bötzinger complex and the diaphragmatic motor neurons (Ellenberger and</p><p>Feldman, 1988; Ellenberger etal., 1990a; Tian and Duffin, 1996; Boulenguez etal., 2007; Buttry</p><p>and Goshgarian, 2015). The direct pathway is complemented by a presumably weaker disynaptic</p><p>pathway via premotor interneurons in the upper cervical (C1 and C2) segments (Lipski etal., 1994;</p><p>Tian and Duffin, 1996; Lane etal., 2008). In addition, the rVRG projects also to the ambiguus, hypo-</p><p>glossal and facial motor nuclei (Yamada etal., 1988; Ellenberger etal., 1990b; Lipski etal., 1994;</p><p>Zheng etal., 1998). The rVRG likely contributes to shaping the pattern of respiratory motor output,</p><p>processing and transmitting sensory afferent information, coordinating ventilation with motor activity,</p><p>and regulating accessory and respiratory muscle activity (Jensen etal., 2019).</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 21 of 67</p><p>The output of the rVRG is not limited to primary motor areas, but targets also the cVRG (Ellen-</p><p>berger and Feldman, 1990; Gerrits and Holstege, 1996) and Kölliker- Fuse nucleus (Ellenberger</p><p>etal., 1990b; Lipski etal., 1994; Yokota etal., 2016), and to a lesser extent also the lateral parafa-</p><p>cial nucleus (Biancardi etal., 2021), reticular formation (Zheng etal., 1998), retrotrapezoid nucleus</p><p>(Rosin etal., 2006), NTS and lateral parabrachial nucleus (Yamada etal., 1988; Ellenberger etal.,</p><p>1990a; Zheng etal., 1998), spinal trigeminal nucleus (Zheng etal., 1998), cerebellum (Gaytán and</p><p>Pásaro, 1998), and inferior olive (Swenson and Castro, 1983a).</p><p>Input to the rVRG does not originate solely in the pre- Bötzinger complex, but comes also from the</p><p>Bötzinger complex (Jiang and Lipski, 1990; Bryant etal., 1993; Ezure etal., 2003), Kölliker- Fuse</p><p>nucleus (Ellenberger and Feldman, 1990; Zheng etal., 1998; Yokota etal., 2016), cVRG (Zheng</p><p>etal., 1998),</p><p>NTS (Ezure and Tanaka, 1996; Zheng etal., 1998), retrotrapezoid nucleus (Rosin etal.,</p><p>2006; Bochorishvili etal., 2012; Silva etal., 2016a), and medial parabrachial nucleus (Yokota etal.,</p><p>2016).</p><p>Caudal ventral respiratory group</p><p>The cVRG is home to expiratory pre- motor neurons (Merrill, 1970; Arita etal., 1987), and therefore</p><p>crucial for the control of expiration- related behavior, like vocalization and expulsive reflexes such as</p><p>vomiting, coughing and sneezing (Umezaki etal., 1997; Subramanian and Holstege, 2009). While</p><p>vocalization depends on the projections to the nucleus ambiguus and spinal cord, expulsive reflexes</p><p>use predominantly the latter only (Holstege, 1989; Umezaki et al., 1997). In particular during</p><p>coughing, the cVRG may trigger also the inspiratory phase (Cinelli etal., 2020).</p><p>Contrary to the rVRG, the cVRG does not project to the phrenic nucleus, but instead innervates</p><p>motor neurons of abdominal muscles in the thoracic spinal cord, and those of the upper airway</p><p>muscles in the ambiguus, hypoglossal, trigeminal, and facial nuclei (Holstege, 1989; VanderHorst</p><p>etal., 2001; Ezure etal., 2003; Boers etal., 2006; Holstege and Subramanian, 2016; Jones etal.,</p><p>2016). Other outputs target pre- Bötzinger and Bötzinger complexes, Kölliker- Fuse nucleus, rVRG,</p><p>retrotrapezoid nucleus, lateral parabrachial nucleus and periaqueductal gray (Holstege, 1989; Gang</p><p>etal., 1995; Zheng etal., 1998; Rosin etal., 2006; Jones etal., 2016). Vocalization- related input</p><p>to the cVRG comes largely from the periaqueductal gray, and this connection is also associated with</p><p>sexual behavior (Holstege, 1989; VanderHorst etal., 2000; Oka etal., 2008; Subramanian and</p><p>Holstege, 2009; Holstege and Subramanian, 2016).</p><p>The cVRG receives both excitatory and inhibitory input from the pre- Bötzinger complex (Gerrits</p><p>and Holstege, 1996; Tan et al., 2010; Yang and Feldman, 2018). Also the Bötzinger complex,</p><p>Kölliker- Fuse nucleus, lateral parafacial nucleus and rVRG project to the cVRG (Fedorko and Merrill,</p><p>1984; Ellenberger and Feldman, 1990; Jiang and Lipski, 1990; Bryant etal., 1993; Gerrits and</p><p>Holstege, 1996; Ezure etal., 2003; Song etal., 2012a; Silva etal., 2016a). Other direct inputs</p><p>come from the NTS (Loewy and Burton, 1978; Beckstead etal., 1980; Gerrits and Holstege, 1996),</p><p>retrotrapezoid nucleus (Gerrits and Holstege, 1996; Rosin etal., 2006; Bochorishvili etal., 2012;</p><p>Silva etal., 2016a), and lateral and medial parabrachial nuclei (Gerrits and Holstege, 1996). A direct</p><p>input from the carotid bodies to the area of the cVRG has been described (Finley and Katz, 1992),</p><p>but this connection did not receive as much attention as that to the NTS.</p><p>Reticular formation</p><p>The hindbrain reticular formation is a highly heterogenous region spanning from the pons to the</p><p>caudal medulla, counting many subdivisions with often unclear borders. While many respiratory</p><p>regions are connected with parts of the reticular formation, this connectivity is difficult to compare</p><p>between different studies, especially considering that the nomenclature of the reticular subdivisions</p><p>has been quite fluid. For this reason, we focus only on those connections with a clear role in respiratory</p><p>control; other connections are summarized in Supplementary file 1. In particular, we mention three</p><p>connections from the pre- Bötzinger complex in which the reticular formation serves as pre- motor</p><p>area. First, there is the connection via the perihypoglossal area to the hypoglossal nucleus that is</p><p>relevant for upper airway control (Chamberlin etal., 2007; Tan etal., 2010; Yang and Feldman,</p><p>2018). Second, two regions serve as premotor areas for the part of the facial nucleus that controls</p><p>among others nose movements: the retrofacial area just caudal to the facial nucleus, and a part of the</p><p>intermediate reticular formation, and both areas probably receive direct input from the pre- Bötzinger</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 22 of 67</p><p>complex (Kurnikova etal., 2019). Third, next to the nose region of the intermediate reticular forma-</p><p>tion is the vibrissal region that links the pre- Bötzinger complex to the vibrissal part of the facial nucleus</p><p>(Moore etal., 2013; Takatoh etal., 2022). The latter two pathways can contribute to the coupling</p><p>of nose movements, whisking and respiration (Welker, 1964; Moore etal., 2013; Kurnikova etal.,</p><p>2019; Romano etal., 2020; Takatoh etal., 2022). The reticular formation could serve a similar pre-</p><p>motor function for the diaphragm as well, as in particular the gigantocellular part projects directly</p><p>to the phrenic nucleus (Ellenberger etal., 1990b; Dobbins and Feldman, 1994; Lois etal., 2009).</p><p>Limbic system</p><p>Of the limbic system, the amygdala and hypothalamus are involved in subconscious control of respira-</p><p>tion. The former is particularly important for handling fear responses, for example, as a consequence</p><p>of high levels of CO2, while the latter is especially important for coupling with the endocrine system, as</p><p>well as for peptidergic modulation of respiration. The lateral hypothalamus is a central chemoreceptor</p><p>area, and – although part of the limbic system – discussed in the section on central chemoreception.</p><p>Central amygdala</p><p>The central amygdala plays a role in CO2- induced fear behavior (Ziemann etal., 2009), and electrical</p><p>stimulation of the central amygdala can indeed affect breathing (Applegate etal., 1983; Harper</p><p>etal., 1984; Nobis etal., 2018). In humans, amygdalar stimulation leads to hypopnea or even apnea</p><p>during nasal breathing, but not during mouth breathing (Nobis et al., 2018), indicating stronger</p><p>impact on the upper airways than on respiratory rhythmogenesis itself.</p><p>Renewed attention for a respiratory role of the central amygdala comes from findings in sudden</p><p>unexpected death in epilepsy (SUDEP). Typically, this sequence leads to SUDEP: rapid breathing after</p><p>a seizure, followed by apnea, bradycardia, and finally cardiac arrest (Ryvlin etal., 2013). Furthermore,</p><p>EEG recordings in patients with epilepsy correlate amygdalar activity with seizure- induced apnea</p><p>(Nobis etal., 2019).</p><p>It has been proposed that the impact of the amygdala on respiratory control is mainly exerted via its</p><p>direct projection to the bed nucleus of the stria terminalis (Nobis etal., 2018). However, as the central</p><p>amygdala gives rise to widespread GABAergic projections, also other connections may be relevant for</p><p>respiratory control (Hopkins and Holstege, 1978; Pape and Pare, 2010; Liu etal., 2021a). Target</p><p>areas include the pre- Bötzinger complex (Yang etal., 2020; Trevizan- Baú etal., 2021a), hypoglossal</p><p>nucleus (Guo etal., 2020), retrotrapezoid nucleus (Rosin etal., 2006), NTS (Gasparini etal., 2020),</p><p>locus coeruleus (Schwarz etal., 2015; Liu etal., 2021a), dorsal raphe (Peyron etal., 1998a; Ogawa</p><p>etal., 2014; Pollak Dorocic etal., 2014; Weissbourd etal., 2014), caudal raphe (Hermann etal.,</p><p>1997), lateral hypothalamus (Yoshida et al., 2006), lateral and medial parabrachial nuclei (Moga</p><p>etal., 1990; Liu etal., 2021a; Yang etal., 2021), periaqueductal gray (Oka etal., 2008; Liu etal.,</p><p>2021a; Trevizan- Baú etal., 2021a), and PPTg (Semba and Fibiger, 1992).</p><p>The central amygdala receives input from the NTS (Kawai, 2018), locus coeruleus (Borodovitsyna</p><p>etal., 2020), dorsal raphe (Bienkowski and Rinaman, 2013), lateral and paraventricular hypothal-</p><p>amus (Fu etal., 2020), bed nucleus of the stria terminalis (Fu etal., 2020), lateral and medial parab-</p><p>rachial nuclei (Bienkowski and Rinaman, 2013), periaqueductal gray (Rizvi etal., 1991), and PPTg</p><p>(Dautan etal., 2016).</p><p>Bed nucleus of the stria terminalis</p><p>The bed nucleus of the stria terminalis is part of the extended amygdala and a main output station of</p><p>the central amygdala (Liu etal., 2021a). It is central to fear, aggression and stress responses (Walker</p><p>etal., 2003; Lebow and Chen, 2016). In relation to respiration, the bed nucleus of the stria terminalis</p><p>may be particularly relevant for anxious responses, or even panic caused by increased levels of CO2</p><p>(Taugher etal., 2014). To this end, the bed nucleus of the stria terminalis expresses relatively high</p><p>levels of acid- sensing ion channel 1A (ASIC1A) (Coryell etal., 2007; Taugher etal., 2014). ASIC1A</p><p>in the bed nucleus of the stria terminalis is also essential for the freezing reaction of mice, which</p><p>implicates a strong reduction in breathing, upon exposure to a predator odor (Taugher etal., 2015).</p><p>Apart from the central amygdala (Dong etal., 2001a; Shin etal., 2008; Lebow and Chen, 2016;</p><p>Ni et al., 2016), other areas targeting the bed nucleus of the stria terminalis are the lateral and</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 23 of 67</p><p>dorsomedial hypothalamus (Shin et al., 2008), NTS (Ricardo and Tongju Koh, 1978; Shin et al.,</p><p>2008; Bienkowski and Rinaman, 2013; Ni etal., 2016; Kawai, 2018), locus coeruleus (Ni etal.,</p><p>2016), dorsal raphe nucleus (Vertes, 1991; Shin etal., 2008; Bienkowski and Rinaman, 2013; Ni</p><p>etal., 2016), lateral parabrachial nucleus (Shin etal., 2008; Bienkowski and Rinaman, 2013; Ni</p><p>etal., 2016; Jaramillo etal., 2021), and periaqueductal gray (Shin etal., 2008; Ni etal., 2016).</p><p>Relating to their functional similarities, the central amygdala and bed nucleus of the stria terminalis</p><p>receive input from the same brain regions, often even from collaterals, except from the substantia</p><p>nigra pars compacta, that does not project to the bed nucleus of the stria terminalis (Bienkowski and</p><p>Rinaman, 2013). This does not imply that all projections are equally strong. In particular, the parabra-</p><p>chial nuclei project stronger to the central amygdala, and the NTS stronger to the bed nucleus of the</p><p>stria terminalis (Bienkowski and Rinaman, 2013).</p><p>Output reaches the central amygdala (Dong etal., 2001b; Fu etal., 2020), lateral, dorsomedial</p><p>and paraventricular hypothalamus (Yoshida etal., 2006; Barbier etal., 2021), NTS (Gasparini etal.,</p><p>2020), locus coeruleus (Luppi etal., 1995; Schwarz etal., 2015), dorsal raphe nuclei (Peyron etal.,</p><p>1998a; Lee etal., 2003; Ogawa etal., 2014; Pollak Dorocic etal., 2014; Weissbourd etal., 2014),</p><p>caudal raphe (Hermann et al., 1997), lateral and medial parabrachial nuclei (Moga et al., 1990;</p><p>Luskin etal., 2021), and PPTg (Steininger etal., 1992).</p><p>Paraventricular hypothalamus</p><p>The paraventricular nucleus of the hypothalamus is vital for the hypoxia reflex: decreased heart rate</p><p>and increased blood pressure and phrenic nerve activity (Kubo etal., 1997; Reddy etal., 2005;</p><p>Ruyle etal., 2019). The paraventricular nucleus is reciprocally connected with the NTS (Rinaman,</p><p>1998; Geerling etal., 2010; King etal., 2012; Gasparini etal., 2020), and the NTS serves both</p><p>as intermediate for the ascending input coming from the carotid bodies, and for the descending</p><p>output affecting the phrenic nucleus (Ruyle etal., 2018; Ruyle etal., 2019). The impact of these</p><p>NTS- projecting paraventricular fibers may be complemented by vasopressinergic connections to the</p><p>phrenic nucleus (Kc etal., 2002), oxytocinergic projections to the pre- Bötzinger complex (Mack etal.,</p><p>2002; Yang etal., 2020; Trevizan- Baú etal., 2021a), or by projections to the Kölliker- Fuse nucleus</p><p>(Yokota etal., 2016; Trevizan- Baú etal., 2021a), PiCo (Oliveira etal., 2021), ambiguus, hypoglossal</p><p>and facial motor nuclei (Mack etal., 2007; Geerling etal., 2010; Guo etal., 2020), reticular forma-</p><p>tion (Geerling etal., 2010), retrotrapezoid nucleus (Rosin etal., 2006; Geerling etal., 2010), locus</p><p>coeruleus (Luppi etal., 1995; Zheng etal., 1995; Schwarz etal., 2015), dorsal and caudal raphe</p><p>(Zheng etal., 1995; Hermann etal., 1997; Peyron etal., 1998a; Lee etal., 2003; Geerling etal.,</p><p>2010; Ogawa etal., 2014; Pollak Dorocic etal., 2014; Weissbourd etal., 2014; Singh etal., 2022),</p><p>lateral hypothalamus (Yoshida etal., 2006; Singh etal., 2022), lateral and medial parabrachial nuclei</p><p>(Zheng etal., 1995; Geerling etal., 2010; Singh etal., 2022), periaqueductal gray (Zheng etal.,</p><p>1995; Geerling etal., 2010; Trevizan- Baú etal., 2021a; Singh etal., 2022), bed nucleus of the stria</p><p>terminalis (Singh etal., 2022), central amygdala (Fu etal., 2020), spinal trigeminal and paratrigem-</p><p>inal nuclei (Zheng etal., 1995; Geerling etal., 2010), PPTg (Zheng etal., 1995; Geerling etal.,</p><p>2010), and cerebellum (Dietrichs, 1984; Çavdar etal., 2018a).</p><p>Apart from the NTS, the lateral and dorsomedial nucleus of the hypothalamus (Thompson etal.,</p><p>1996; Singh et al., 2022), locus coeruleus (Jones and Moore, 1977; Jones and Yang, 1985;</p><p>Cunningham and Sawchenko, 1988), bed nucleus of the stria terminalis (Barbier etal., 2021), and</p><p>lateral parabrachial nucleus (Saper and Loewy, 1980; Fulwiler and Saper, 1984; Moga etal., 1990)</p><p>project to the paraventricular nucleus.</p><p>Dorsomedial hypothalamus</p><p>The dorsomedial hypothalamus is essential for mediating respiratory effects of stressful stimuli (Bond-</p><p>arenko et al., 2015). To this end, it receives input from other hypothalamic regions and the bed</p><p>nucleus of the stria terminalis, as well as from the periaqueductal gray, lateral parabrachial nucleus,</p><p>NTS (Thompson and Swanson, 1998; Do etal., 2020), pre- Bötzinger complex (Yang and Feldman,</p><p>2018), and Kölliker- Fuse nucleus (Geerling etal., 2017).</p><p>The dorsomedial hypothalamus projects predominantly to other hypothalamic nuclei, in particular</p><p>to the paraventricular nucleus, but also to the bed nucleus of the stria terminalis, periaqueductal gray,</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 24 of 67</p><p>NTS (Thompson etal., 1996), Kölliker- Fuse nucleus (Trevizan- Baú etal., 2021a), dorsal and caudal</p><p>raphe (Peyron etal., 2018; Trevizan- Baú etal., 2021a), and cerebellar cortex (Çavdar etal., 2018a).</p><p>Modulatory brain regions</p><p>On top of the central pattern generators, (pre)motor areas, sensory areas and limbic system, also</p><p>other brain regions can affect specific aspects of respiration, often to adapt respiration to other</p><p>behaviors. In fact, few brain regions are completely unrelated to respiration. In the following section,</p><p>we restrict ourselves to those brain regions of which a non- voluntary respiratory function has been</p><p>clearly described.</p><p>Lateral parabrachial nucleus</p><p>The parabrachial nuclei produce a tonic excitatory drive that can, in conjunction with output from the</p><p>Kölliker- Fuse nucleus, contribute to setting the duration of inspiration and expiration (Navarrete-</p><p>Opazo etal., 2020). In addition, the lateral parabrachial nucleus is also crucial in the hypercapnic</p><p>arousal reflex that can trigger waking up during sleep (Kaur etal., 2013). It has been suggested that</p><p>frequent hypercapnic arousals contribute to day- time fatigue and cardiovascular problems in patients</p><p>with obstructive sleep apnea (Abbott and Souza, 2021). The lateral parabrachial nucleus has a tonic</p><p>descending drive and an event- driven ascending one. The latter is consistent with other functions of</p><p>the lateral parabrachial nucleus, as it responds to various aversive signals, varying from food poisoning</p><p>to itch and hypercapnia, and can send a general alarm signal to the forebrain (Palmiter, 2018; Chiang</p><p>etal., 2019; Jaramillo etal., 2021).</p><p>The main outputs target the lateral hypothalamus (Saper and Loewy, 1980; Fulwiler and Saper,</p><p>1984; Moga etal., 1990; Bianchi etal., 1998; Yoshida etal., 2006; Arima etal., 2019), bed nucleus</p><p>of the stria terminalis (Saper and Loewy, 1980; Fulwiler and Saper, 1984; Moga etal., 1990; Bianchi</p><p>etal., 1998; Shin etal., 2008; Bienkowski and Rinaman, 2013; Ni etal., 2016), central amygdala</p><p>(Saper and Loewy, 1980; Moga etal., 1990; Bianchi etal., 1998; Tokita etal., 2010; Bienkowski</p><p>and Rinaman, 2013), and thalamus (Jaramillo etal., 2021). Other targets are the pre- Bötzinger and</p><p>Bötzinger complexes (Gang etal., 1995; Yang etal., 2020; Yu etal., 2022), lateral parafacial nucleus</p><p>(Biancardi et al., 2021), cVRG (Gerrits and Holstege, 1996), ambiguus nucleus (Rübsamen and</p><p>Schweizer, 1986), hypoglossal nucleus (Yokota etal., 2015), retrotrapezoid nucleus (Rosin etal.,</p><p>2006), NTS (Saper and Loewy, 1980; Herbert etal., 1990; Bianchi etal., 1998), locus coeruleus</p><p>(Luppi etal., 1995), dorsal and caudal raphe (Saper and Loewy, 1980; Hermann etal., 1997; Bianchi</p><p>etal., 1998; Lee etal., 2003; Peyron etal., 2018), paraventricular nucleus (Saper and Loewy, 1980;</p><p>Fulwiler and Saper, 1984; Moga et al., 1990; Singh et al., 2022), periaqueductal gray (Bianchi</p><p>etal., 1998), and PPTg (Steininger etal., 1992).</p><p>The main ascending inputs to the lateral parabrachial nucleus come from the spinal cord and NTS</p><p>(Palmiter, 2018). Other inputs come from the pre- Bötzinger and Bötzinger complexes (Tan etal.,</p><p>2010; Yang and Feldman, 2018), Kölliker- Fuse nucleus (Song etal., 2012a; Geerling etal., 2017),</p><p>rVRG (Holstege, 1989), NTS (Beckstead etal., 1980; Herbert etal., 1990; McGovern etal., 2015b;</p><p>Kawai, 2018; Yu etal., 2022), retrotrapezoid nucleus (Rosin etal., 2006; Bochorishvili etal., 2012;</p><p>Silva etal., 2016a), locus coeruleus (Robertson etal., 2013; Yang etal., 2021), dorsal raphe (Petrov</p><p>etal., 1992; Quattrochi etal., 1998; Kaur etal., 2020), bed nucleus of stria terminalis (Moga etal.,</p><p>1990), central amygdala (Moga et al., 1990; Yang et al., 2021), paraventricular nucleus (Zheng</p><p>etal., 1995; Geerling etal., 2010; Singh etal., 2022), spinal trigeminal nucleus (Panneton etal.,</p><p>2006; Zhang etal., 2018), paratrigeminal nucleus (Saxon and Hopkins, 1998; Caous etal., 2001;</p><p>McGovern etal., 2015b; Driessen etal., 2018), PPTg (Quattrochi etal., 1998; Lima etal., 2019b),</p><p>and fastigial nucleus (Teune etal., 2000).</p><p>Medial parabrachial nucleus</p><p>Activity of the medial parabrachial nucleus affects, like that of the lateral parabrachial nucleus, the</p><p>breathing frequency by modulating the duration of expiration (von Euler et al., 1976; Zuperku</p><p>etal., 2017). The medial parabrachial nucleus contains more expiratory neurons than the neighboring</p><p>Kölliker- Fuse nucleus that has more inspiratory and phase- spanning neurons (Song etal., 2006). The</p><p>medial parabrachial nucleus has a dense expression of µ-opioid receptors (Ding etal., 1996) and</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 25 of 67</p><p>plays an important role in the mediation of respiratory depression by opioids (Miller etal., 2017;</p><p>Algera etal., 2019; Saunders and Levitt, 2020). Unlike the lateral parabrachial nucleus, the medial</p><p>parabrachial nucleus is not involved in the hypercapnic arousal reflex (Kaur etal., 2013).</p><p>The medial parabrachial nucleus has both excitatory and inhibitory projections to pre- inspiratory</p><p>neurons in the pre- Bötzinger complex and to expiratory neurons in the Bötzinger complex (Zuperku</p><p>etal., 2019). Activity of the medial parabrachial nucleus can be affected by input from pulmonary</p><p>stretch receptors coming via the NTS (Zuperku et al., 2021), from which it receives direct input</p><p>(Herbert etal., 1990). In addition, it receives input from chemosensitive neurons of the caudal raphe</p><p>nucleus (Brust etal., 2014).</p><p>The medial parabrachial nucleus receives also input from the pre- Bötzinger complex (Tan etal.,</p><p>2010; Yang and Feldman, 2018), Kölliker- Fuse nucleus (Song etal., 2012a; Geerling etal., 2017),</p><p>rVRG (Holstege, 1989), NTS (Loewy and Burton, 1978; Herbert etal., 1990; McGovern etal.,</p><p>2015b), retrotrapezoid nucleus (Rosin etal., 2006), locus coeruleus (Robertson etal., 2013), caudal</p><p>raphe (Brust etal., 2014), bed nucleus of stria terminalis (Moga etal., 1990; Luskin etal., 2021),</p><p>central amygdala (Moga etal., 1990; Liu etal., 2021a; Yang etal., 2021), paraventricular nucleus</p><p>(Zheng etal., 1995; Geerling etal., 2010; Singh etal., 2022), spinal trigeminal nucleus (Hashimoto</p><p>etal., 2018), paratrigeminal nucleus (Saxon and Hopkins, 1998; Caous etal., 2001; McGovern</p><p>etal., 2015b; Driessen etal., 2018), Purkinje cells in the cerebellar cortex (Sugihara etal., 2009;</p><p>Hashimoto etal., 2018), and fastigial nucleus (Teune etal., 2000).</p><p>The medial parabrachial nucleus projects to the pre- Bötzinger and Bötzinger complexes (Gang</p><p>etal., 1995; Yang etal., 2020), lateral parafacial nucleus (Biancardi etal., 2021), rVRG and cVRG</p><p>(Gerrits and Holstege, 1996; Yokota etal., 2016), ambiguus and hypoglossal nuclei (Saper and</p><p>Loewy, 1980; Rübsamen and Schweizer, 1986; Núñez- Abades et al., 1990; Guo et al., 2020),</p><p>retrotrapezoid nucleus (Rosin etal., 2006), NTS (Herbert etal., 1990; Bianchi etal., 1998), locus</p><p>coeruleus (Luppi etal., 1995), dorsal and caudal raphe (Saper and Loewy, 1980; Hermann etal.,</p><p>1997; Bianchi etal., 1998; Lee etal., 2003; Peyron etal., 2018), lateral hypothalamus (Saper and</p><p>Loewy, 1980; Fulwiler and Saper, 1984; Moga etal., 1990; Bianchi etal., 1998), bed nucleus of the</p><p>stria terminalis (Bianchi etal., 1998; Bienkowski and Rinaman, 2013; Ni etal., 2016), central amyg-</p><p>dala (Fulwiler and Saper, 1984; Moga etal., 1990; Bienkowski and Rinaman, 2013), periaqueductal</p><p>gray (Bianchi etal., 1998), and cerebellum (Fu etal., 2011).</p><p>Periaqueductal gray</p><p>The periaqueductal gray, also known as the central gray, contributes to maintaining the homeostatic</p><p>balance of an individual. To this end it participates in controlling defensive, emotional, social, sexual</p><p>and autonomic behaviors, but also in modulating unpleasant sensations, such as pain, itch or the</p><p>urge to cough (Bandler etal., 2000; Linnman etal., 2012; Motta etal., 2017). In addition, the</p><p>periaqueductal gray is central to the control of vocalizations (Magoun etal., 1937; Zhang etal.,</p><p>1994; Esposito etal., 1999; Jürgens, 2002; Subramanian etal., 2021) via its strong projection</p><p>to the cVRG that is the only brain area directly targeting all motor areas required for vocalization</p><p>(VanderHorst etal., 2000; Holstege and Subramanian, 2016). This pathway is especially relevant</p><p>for emotional vocalizations, like crying and laughing, that do not rely on Broca’s area, as human</p><p>speech does (Holstege and Subramanian, 2016). For this reason, the periaqueductal gray can be</p><p>seen as the laughing center, receiving excitatory input from emotion- related pathways originating</p><p>from the basal temporal and frontal lobes, limbic system, and basal ganglia, and inhibition from</p><p>voluntary systems, in particular (pre)motor cortices (Wild etal., 2003; Klingbeil etal., 2021). As to</p><p>the suppression of involuntary laughter, the periaqueductal gray can also contribute to the suppres-</p><p>sion of the urge to cough. The periaqueductal gray sends predominantly GABAergic fibers to the</p><p>NTS (Chen etal., 2022; Figure5F). This can have clinical relevance, as the common condition of</p><p>chronic cough is thought to be caused by hypersensitivity to airway stimulation (Morice et al.,</p><p>2020).</p><p>Although the periaqueductal gray lacks clearly discernible cell groups, specific functions can be</p><p>roughly attributed to four longitudinal columns that differ in their connectivity patterns (Carrive,</p><p>1993). The lateral (lPAG) and dorsolateral (dlPAG) columns are mostly involved in active coping strat-</p><p>egies, such as fight or flight, while the ventrolateral (vlPAG) column is associated with passive coping</p><p>strategies, like freezing (Bandler etal., 2000; Linnman etal., 2012; Faull etal., 2019).</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 26 of 67</p><p>The periaqueductal gray subserves</p><p>several respiratory functions to support stereotypical behavioral</p><p>responses. These functions are distributed over the four cell columns, largely in line with their general</p><p>function (Subramanian etal., 2008; Subramanian, 2013; Faull etal., 2019). Chemical stimulation of</p><p>the dlPAG triggers active breathing, as occurring during fight and flight situations, while stimulation</p><p>of the dorsomedial and the medial part of the lPAG resulted in slow deep breathing and dyspnea, and</p><p>inspiratory apneusis, respectively. Finally, stimulation of the lateral parts of lPAG and vlPAG induced</p><p>respiratory patterns associated with vocalizations (Subramanian etal., 2008).</p><p>The periaqueductal gray is an important hub between the fore- and hindbrain, receiving input</p><p>from multiple cortical areas as well as from the lateral, dorsomedial and paraventricular hypothalamus</p><p>(Beitz, 1989; Zheng etal., 1995; Thompson etal., 1996; Geerling etal., 2010; Trevizan- Baú etal.,</p><p>2021a; Singh etal., 2022). Ascending input to the periaqueductal gray comes directly from the spinal</p><p>cord, and in particular from the upper cervical cord, to the lPAG and vlPAG (Keay etal., 1997). Also</p><p>the NTS, the prime recipient of vagal sensory input, projects to the ventrolateral and medial PAG</p><p>(Herbert and Saper, 1992; Kawai, 2018). Other respiratory centers in the brainstem also project to</p><p>the lPAG and vlPAG: the pre- Bötzinger and Bötzinger complexes, Kölliker- Fuse nucleus (Tan etal.,</p><p>2010; Yang and Feldman, 2018; Trevizan- Baú etal., 2021b), locus coeruleus (Jones and Moore,</p><p>1977; Jones and Yang, 1985), dorsal and caudal raphe (Vertes, 1991; Herbert and Saper, 1992;</p><p>Trevizan- Baú etal., 2021b), lateral and medial parabrachial nuclei (Bianchi etal., 1998), paratrigem-</p><p>inal nucleus (McGovern etal., 2015b), and fastigial and dentate cerebellar nuclei (Teune etal., 2000;</p><p>Frontera etal., 2020).</p><p>Descending output from the periaqueductal gray targets multiple respiratory centers. All four</p><p>columns, but in particular the lPAG and vlPAG, target the pre- Bötzinger complex, Kölliker- Fuse</p><p>nucleus and lateral parafacial nucleus (Tan etal., 2010; Yang and Feldman, 2018; Biancardi etal.,</p><p>2021; Trevizan- Baú etal., 2021b). Ipsilateral connections to the parafacial nucleus are predominantly</p><p>glutamatergic, while contralateral projections have a mixture of glutamatergic and GABAergic fibers</p><p>(Biancardi etal., 2021). The periaqueductal gray innervates also the PiCo (Oliveira etal., 2021),</p><p>retrotrapezoid nucleus (Rosin etal., 2006), NTS (VanderHorst etal., 2000; Chen etal., 2022), locus</p><p>coeruleus (Luppi etal., 1995; Schwarz etal., 2015), dorsal and caudal raphe (Hermann etal., 1997;</p><p>Ogawa etal., 2014; Pollak Dorocic etal., 2014; Peyron etal., 2018; Trevizan- Baú etal., 2021b),</p><p>PPTg (Semba and Fibiger, 1992; Steininger etal., 1992), and inferior olive (Swenson and Castro,</p><p>1983b; VanderHorst etal., 2000). Forebrain projections include the lateral hypothalamus (Woolf</p><p>and Butcher, 1986; Yoshida etal., 2006), bed nucleus of the stria terminalis (Shin etal., 2008; Ni</p><p>etal., 2016), and central amygdala (Rizvi etal., 1991).</p><p>Tegmentum</p><p>The pedunculopontine tegmental nucleus (PPTg) and the adjacent laterodorsal tegmental nucleus</p><p>provide important sources of cholinergic fibers, the activation of which is sufficient to induce REM</p><p>sleep during non- REM sleep (Van Dort etal., 2015). To this end, the pedunculopontine and latero-</p><p>dorsal tegmental nuclei provide widespread innervation of the thalamus and basal ganglia (Mena-</p><p>Segovia and Bolam, 2017), but also of the retrotrapezoid nucleus (Lima etal., 2019b; Silva etal.,</p><p>2019). As the chemoreceptor activity in the retrotrapezoid nucleus can be modulated by acetylcholine</p><p>(Sobrinho etal., 2016), this could imply a different sensitivity to pCO2 during REM sleep. Indeed,</p><p>partial lesioning of the PPTg resulted in abnormal sleep patterns during intermittent hypoxia, while</p><p>leaving basic respiratory parameters intact (Fink etal., 2021).</p><p>Pharmacological activation of muscarinic acetylcholine receptors in the PPTg resulted in decreased</p><p>breathing rates in awake rats (Lima et al., 2019a), and also glutamate injections could suppress</p><p>breathing in anesthetized rats (Saponjic etal., 2003; Topchiy etal., 2010). Inhibition of the PPTg</p><p>resulted in increased inspiratory activity (Silva etal., 2019). Overall, it seems that the PPTg can inhibit</p><p>the function of the retrotrapezoid nucleus, and thereby modulate the respiratory drive. This may be</p><p>particularly relevant during REM sleep, given the interaction between PPTg, hypoxia and disrupted</p><p>sleep patterns (Silva etal., 2019; Fink etal., 2021).</p><p>The target areas of the PPTg are not restricted to those mentioned above, but also include the</p><p>Kölliker- Fuse nucleus (Lima etal., 2019b), lateral parafacial nucleus (Biancardi etal., 2021), hypo-</p><p>glossal, trigeminal and facial motor nuclei (Woolf and Butcher, 1989), locus coeruleus (Woolf and</p><p>Butcher, 1989), dorsal and caudal raphe (Woolf and Butcher, 1989; Hermann etal., 1997; Ogawa</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 27 of 67</p><p>etal., 2014; Lima etal., 2019b), lateral hypothalamus (Woolf and Butcher, 1986), bed nucleus of the</p><p>stria terminalis (Ni etal., 2016), central amygdala (Dautan etal., 2016), lateral parabrachial nucleus</p><p>(Quattrochi etal., 1998; Lima etal., 2019b), spinal trigeminal nucleus (Woolf and Butcher, 1989),</p><p>and all three cerebellar nuclei (Woolf and Butcher, 1989; Ruggiero etal., 1997; Vitale etal., 2016).</p><p>Input to the PPTg comes from the NTS (Steininger etal., 1992), locus coeruleus (Steininger etal.,</p><p>1992), dorsal and caudal raphe (Vertes, 1991; Semba and Fibiger, 1992; Steininger etal., 1992),</p><p>lateral and paraventricular hypothalamus (Semba and Fibiger, 1992; Steininger etal., 1992; Zheng</p><p>etal., 1998; Geerling etal., 2010), bed nucleus of the stria terminalis (Steininger etal., 1992),</p><p>central amygdala (Semba and Fibiger, 1992), lateral parabrachial nucleus (Steininger etal., 1992),</p><p>and cerebellar nuclei (Hazrati and Parent, 1992; Steininger etal., 1992).</p><p>Basal ganglia</p><p>Despite their widespread connectivity and importance for motor control (Roseberry etal., 2016; Lee</p><p>etal., 2020; Quartarone etal., 2020), the basal ganglia are not typically considered to be part of</p><p>the respiratory control network. Possibly the best- known consequence of basal gangliar dysfunction</p><p>is Parkinson’s disease, caused by progressive degeneration of dopaminergic neurons in the substantia</p><p>nigra (Kalia and Lang, 2015). Patients with Parkinson’s disease can be confronted with respiratory</p><p>problems, but these may be attributed to degeneration of respiratory muscles, and therefore not</p><p>directly to respiratory control (Guedes et al., 2012; Baille et al., 2018; Guilherme et al., 2021).</p><p>Patients with Parkinson’s disease may also experience sleep- disturbed breathing or dyspnea (Docu</p><p>Axelerad etal., 2021). With a prevalence of 12%, dyspnea is a relatively rare symptom of Parkinson’s</p><p>disease (Barone etal., 2009), and its cause is unclear (Docu Axelerad etal., 2021). Overall, the basal</p><p>ganglia, and the substantia nigra in particular, therefore, do not seem to play a major role in respira-</p><p>tory control.</p><p>Nevertheless, there are anatomical connections between the substantia nigra and the respiratory</p><p>control centers, including a direct pathway to the pre- Bötzinger complex (Yang etal., 2020). In a</p><p>rat model for Parkinson’s disease, modulation of the retrotrapezoid nucleus by the substantia nigra</p><p>indirectly, via the periaqueductal gray, could contribute to respiratory control (Lima et al., 2018).</p><p>Given the uncertainty of the impact of the basal ganglia on respiratory control, these outputs of the</p><p>substantia nigra have been hypothesized to provide respiratory control centers with information on</p><p>other ongoing movements, to facilitate respiratory</p><p>control into the behavioral context of the animal</p><p>(Yang etal., 2020). For this reason, we did not further consider the basal ganglia as control center for</p><p>the subconscious regulation of respiration.</p><p>Cerebral cortex</p><p>Breathing is rather unique among the autonomic functions as it can be subjected to volitional control,</p><p>modulated by the emotional state, adapted to other ongoing behaviors, and vital for vocalizations</p><p>and human speech. It is quite likely that the cerebral cortex plays an important role in these functions</p><p>(Herrero etal., 2018). Unlike lesions of the subcortical, and in particular of the medullar respiratory</p><p>centers, lesions of cortical respiratory areas do not abolish respiration (Ramirez etal., 2011). The</p><p>anatomical aspects of cortical modulation of respiration have received relatively little attention, and</p><p>we consider the integration of the thalamocortical system into the anatomical scheme of Figure7 an</p><p>important future task.</p><p>There is early evidence for a direct projection from the cat motor cortex to the phrenic nucleus,</p><p>bypassing the medullary respiratory circuitry (Rikard- Bell etal., 1985). In addition, a wide spectrum</p><p>of projections from different cortical areas targets subcortical respiratory control areas, with the most</p><p>numerous projections targeting the periaqueductal gray and the Kölliker- Fuse nucleus, and less abun-</p><p>dant projections to the caudal raphe nucleus, Bötzinger and pre- Bötzinger complexes (Trevizan- Baú</p><p>etal., 2021a). In this study, the Kölliker- Fuse nucleus was predominantly targeted from the (facial)</p><p>somatosensory, endopiriform and rhinal cortices, and the periaqueductal gray from the insular, cingu-</p><p>late, motor, pre- and infralimbic cortices. In addition, the NTS receives a direct projection form the</p><p>insular cortex (Torrealba and Müller, 1996; Gasparini etal., 2020).</p><p>In the context of the present review, especially the function of the insular cortex is relevant. It</p><p>appears to be the prime cortical target area of visceral input, and it has a viscerotopic organization</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 28 of 67</p><p>Inspiration Post-in</p><p>sp</p><p>ira</p><p>tio</p><p>n</p><p>Active expiration</p><p>Inferior</p><p>olive</p><p>Cerebellar</p><p>nuclei</p><p>Jaw</p><p>Carotid bodies</p><p>Upper airways</p><p>Heart</p><p>Nose</p><p>Lower airways</p><p>Abdomen</p><p>O2 CO2</p><p>Phrenic</p><p>nucleus</p><p>Thoracic</p><p>spinal</p><p>cord</p><p>Trigeminal</p><p>motor</p><p>nucleus</p><p>Facial</p><p>nucleus</p><p>Hypo-</p><p>glossal</p><p>nucleus</p><p>Cervical</p><p>spinal</p><p>cord</p><p>Ambiguus</p><p>nucleus</p><p>Semi-circular canals</p><p>Vibrissae</p><p>Tongue</p><p>Intercostal muscles</p><p>Diaphragm</p><p>Dorso-</p><p>medial</p><p>hypothal.</p><p>Paraventri-</p><p>cular</p><p>hypothal.</p><p>NTS</p><p>Central</p><p>amygdala</p><p>BNST</p><p>Retro-</p><p>trapezoid</p><p>nucleus</p><p>CO2</p><p>Locus</p><p>coeruleus</p><p>Dorsal</p><p>raphe</p><p>CO2</p><p>Caudal</p><p>raphe</p><p>CO2</p><p>Lateral</p><p>hypo-</p><p>thalamus</p><p>CO2</p><p>Clarke’s</p><p>column</p><p>PiCo</p><p>Lateral</p><p>parafacial</p><p>nucleus</p><p>Bötzinger</p><p>complex</p><p>Periaque-</p><p>ductal</p><p>gray</p><p>PPTg</p><p>LPBN</p><p>MPBN</p><p>Reticular</p><p>formation cVRGrVRG</p><p>Cerebellar</p><p>cortex</p><p>Vestibular</p><p>nuclei</p><p>Basal</p><p>ponsMDJ</p><p>Pre-</p><p>Bötzinger</p><p>complex</p><p>CO2</p><p>Para-</p><p>trigeminal</p><p>nucleus</p><p>Spinal</p><p>trigeminal</p><p>nucleus</p><p>CO2</p><p>CO2</p><p>Kölliker-</p><p>Fuse</p><p>nucleus</p><p>Figure 7. Main pathways underlying subconscious control of respiration Schematic drawing representing the brain areas most involved in subconscious</p><p>control of respiration and the main pathways connecting them. Fat lines indicate relatively strong connections and thin lines moderately strong ones.</p><p>Sparse connections are not included in this scheme. When an area is marked with ‘CO2’ it contains central chemoreceptor properties, while the carotid</p><p>bodies sense blood levels of CO2 and of O2. The central pattern generators are indicated with a sine wave. BNST = bed nucleus of the stria terminalis;</p><p>Figure 7 continued on next page</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 29 of 67</p><p>(Cechetto and Saper, 1987; Bagaev and Aleksandrov, 2006; Livneh and Andermann, 2021). EEG</p><p>recordings of the insular cortex revealed coherence with breathing (Herrero etal., 2018). Depending</p><p>on the location within the insular cortex, microstimulation could either increase or decrease the respi-</p><p>ratory rate (Bagaev and Aleksandrov, 2006), suggesting that the insular cortex can affect respiration</p><p>in response to vagal sensory input.</p><p>Cerebellum</p><p>The cerebellum is composed of a cortex surrounding the fastigial, interposed and dentate nuclei.</p><p>The output of the cerebellar cortex is formed by Purkinje cells that predominantly target the cere-</p><p>bellar nuclei (Voogd and Glickstein, 1998), although direct connections to the vestibular nuclei, locus</p><p>coeruleus, and lateral and medial parabrachial nuclei exist as well (Zeeuw and Berrebi, 1995; Sada-</p><p>kane etal., 2000; Sugihara etal., 2009; Schwarz etal., 2015; Hashimoto etal., 2018; Novello</p><p>etal., 2022). From the cerebellar nuclei, there are projections back to the cerebellar cortex (Tolbert</p><p>etal., 1977; Gao etal., 2016), inhibitory projections to the inferior olive (Voogd and Glickstein,</p><p>1998), and excitatory projections to the MDJ (De Zeeuw and Ruigrok, 1994; Wang etal., 2022) and</p><p>many brain regions relevant for respiratory control.</p><p>Strikingly, there are no direct connections to the phrenic nucleus (Lois etal., 2009), nor to the</p><p>pre- Bötzinger complex (Yang etal., 2020). Instead, diaphragmatic activity can be affected by a direct</p><p>projection to the premotor rVRG (Gaytán and Pásaro, 1998). Although there are direct projections</p><p>from the cerebellum to the trigeminal motor nucleus, affecting upper airway muscles (Judd etal.,</p><p>2021), facial nucleus (Moolenaar and Rucker, 1976; Fujita etal., 2020), and hypoglossal nucleus</p><p>(Guo etal., 2020; Judd etal., 2021), these direct projections to motor nuclei are typically relatively</p><p>sparse so that indirect projections, for example, via the reticular formation, are probably much more</p><p>abundant (Novello etal., 2022).</p><p>Other cerebellar projections that can be relevant for respiratory control target the Kölliker- Fuse</p><p>nucleus (Fujita etal., 2020), locus coeruleus (Teune etal., 2000; Schwarz etal., 2015), dorsal raphe</p><p>nuclei (Teune etal., 2000; Çavdar etal., 2018b), periaqueductal gray (Teune etal., 2000; Frontera</p><p>etal., 2020; Fujita etal., 2020; Judd etal., 2021), lateral and paraventricular hypothalamus (Diet-</p><p>richs etal., 1994; Zhu etal., 2006). Many of these areas, in particular the Kölliker- Fuse nucleus, have</p><p>profound projections to medullary respiratory circuit, so that these projections can explain how the</p><p>cerebellum can affect respiratory control.</p><p>Despite the absence of strong pathways from the cerebellum to the respiratory pattern generators</p><p>and motor nuclei, cerebellar activity can profoundly modulate respiration. Functional brain imaging</p><p>of healthy human subjects revealed that the cerebellum is particularly active during coping with respi-</p><p>ratory challenges: broad activation during hypoxia and slow breathing (Critchley etal., 2015), and</p><p>specific activation in lobules V and VI during hypercapnia (Colebatch etal., 1991; Kastrup etal.,</p><p>1999). Also the cerebellar nuclei are active during hypercapnia and hypoxia (McKay etal., 2010), as</p><p>well as during volitional expiration (Ramsay etal., 1993). Changes in environmental air pressure can</p><p>trigger cerebellar activity as well (Isaev etal., 2002; Raux etal., 2013; Figure6G–J).</p><p>The notion that the cerebellum is particularly relevant for deviating from rhythmic breathing is</p><p>corroborated by the finding that mice suffering from a complete lack of output from the cerebellar</p><p>cortex or from a partial loss of cerebellar output neurons display overly regular breathing at rest (Liu</p><p>etal., 2020; Taylor etal., 2022; Figure6F). Stimulation of the fastigial nucleus in cats can affect</p><p>phrenic nerve activity, and in particular terminate expiratory activity when stimulated during expiration</p><p>(Zhang etal., 1999), analogous to optogenetic stimulation experiments</p><p>of Purkinje cells (Romano</p><p>etal., 2020; Figure6E). And indeed, Lurcher mice that suffer from a complete loss of Purkinje cells</p><p>during their development, demonstrated impaired responses to hypercapnic and hypoxic challenges</p><p>(Calton etal., 2014; Calton etal., 2016). Neuronal activity of the cerebellar cortex and the fastigial</p><p>nucleus is linked to respiration (Lutherer etal., 1989; Gruart and Delgado- García, 1992; Cao etal.,</p><p>2012b; Lu et al., 2013; Romano et al., 2020; Figure 6C–D). At rest, modulation of the activity</p><p>cVRG = caudal ventral respiratory group; LPBN = lateral parabrachial nucleus; MPBN = medial parabrachial nucleus; NTS = nucleus tractus solitarii; PiCo</p><p>= postinspiratory complex; PPTg = peripeduncular tegmental nucleus; rVRG = rostral ventral respiratory group. See also Supplementary file 1.</p><p>Figure 7 continued</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 30 of 67</p><p>of Purkinje cell occurs without phase lead or lag relative to the respiratory cycle (Romano et al.,</p><p>2020), and one could speculate that the cerebellum does not only act to adapt respiration to ongoing</p><p>behavior, but also facilitates adaptation of other behavior to respiration, in line with observations in</p><p>cerebellar patients (Ebert etal., 1995).</p><p>The cerebellum may, in addition, have a particular role in the regulation of breathing during sleep,</p><p>which includes different stages with different respiratory and oculomotor dynamics (Canto et al.,</p><p>2017; De Zeeuw and Canto, 2022; Pujol etal., 2022). Indeed, when shifting from awake to subcon-</p><p>scious behavior and vice- versa, different brain structures such as cerebellum, hippocampus and amyg-</p><p>dala, are dynamically activated and de- activated in line with changes in breathing (Pujol etal., 2022).</p><p>Accordingly, the impact of sleep on breathing and its role in the development of diurnal respiratory</p><p>failure in patients suffering from hypoventilation and/or cerebellar disorders can be overlooked (Piper</p><p>and Yee, 2014; Canto etal., 2017). It remains to be elucidated which sets of mechanisms are involved</p><p>in this process, but it should be noted that sleep by itself does not only reduce respiratory drive, but</p><p>also diminishes responsiveness to hypoxia and hypercapnia. For example, acute increases in CO2</p><p>during rapid eye movement sleep can initiate the process of bicarbonate retention, which further</p><p>depresses ventilatory responsiveness (Piper and Yee, 2014) and which in turn can affect activity in the</p><p>cerebellar nuclei (Parsons etal., 2001; Martino etal., 2007).</p><p>Mossy fiber inputs</p><p>Mossy fibers constitute one of the two main glutamatergic input pathways to the cerebellum. They</p><p>carry ascending as well as descending information to granule cells in the cerebellar cortex, while often</p><p>forming collaterals to the cerebellar nuclei (van der Want etal., 1987; Huang etal., 2013; Ruigrok</p><p>etal., 2015). Cerebellar granule cells make up about halve of all neurons in the brain, and their bifur-</p><p>cating axons, the parallel fibers, target Purkinje cells directly, and indirectly via inhibitory interneurons</p><p>(Harvey and Napper, 1991; De Zeeuw etal., 2011; Ruigrok etal., 2015).</p><p>The pontine nuclei, consisting of the basal pons and the nucleus reticularis tegmenti pontis, are the</p><p>prime source of mossy fibers; not only are they the main intermediate for descending pathways from</p><p>the cerebral cortex, they also receive subcortical input from among others the lateral hypothalamus,</p><p>central amygdala, periaqueductal gray, spinal trigeminal nucleus, PPTg, MDJ, and cerebellar nuclei</p><p>(Mihailoff etal., 1989; Brodal and Bjaalie, 1992; Liu and Mihailoff, 1999; Pijpers and Ruigrok,</p><p>2006; Bosman etal., 2011; Fu etal., 2011; Huang etal., 2013; Ruigrok etal., 2015; Henschke and</p><p>Pakan, 2020).</p><p>Other important mossy fiber sources are the two vagal sensory nuclei relating respiratory visceral</p><p>input to the brain, the NTS (Batini etal., 1978; Somana and Walberg, 1979a; Saigal etal., 1980a;</p><p>Fu et al., 2011) and paratrigeminal nucleus (Somana and Walberg, 1979b). Strong mossy fiber</p><p>connections bind also the spinal trigeminal nucleus, medial parabrachial nucleus, and several parts</p><p>of the medullary reticular formation with the cerebellum (Ruigrok etal., 1995; Yatim etal., 1996;</p><p>Fu etal., 2011). This is also true for multiple spinal regions (Sengul etal., 2015; Baek etal., 2019).</p><p>Weaker projections come from the lateral parabrachial nucleus (Fu etal., 2011), Kölliker- Fuse nucleus</p><p>(Fu etal., 2011), and rVRG (Gaytán and Pásaro, 1998). The pre- Bötzinger complex provides only</p><p>sparse projections to the cerebellum (Yang and Feldman, 2018).</p><p>Climbing fiber inputs</p><p>The other main input to the cerebellum is formed by the climbing fibers that originate exclusively from</p><p>the contralateral inferior olive and that form extraordinarily strong glutamatergic synapses on Purkinje</p><p>cells, next to relatively weak collateral projections to the cerebellar nuclei (Szentágothai and Rajko-</p><p>vits, 1959; Ruigrok etal., 2015; Lu etal., 2016). Where each adult Purkinje cell can receive input</p><p>from over 100,000 parallel fibers, it is typically innervated by only a single climbing fiber (Harvey and</p><p>Napper, 1991; Bosman and Konnerth, 2009). Climbing fiber spikes invariably trigger complex spike</p><p>firing by the postsynaptic Purkinje cells, and these consist of normal action potentials in conjunction</p><p>with dendritic spikelets caused by profound influx of calcium (Llinás and Sugimori, 1980; De Zeeuw</p><p>etal., 2011). Because of their impact on intracellular calcium levels, complex spikes affect the synaptic</p><p>strength of parallel fiber inputs, and thereby control cerebellar learning (Ito, 2000; Coesmans etal.,</p><p>2004; Ohtsuki etal., 2009; van Woerden etal., 2009; Gao etal., 2012; Yang and Lisberger, 2014;</p><p>Romano etal., 2018). Accordingly, climbing fiber activity is strictly regulated, occurs at a sustained,</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 31 of 67</p><p>but low rate, and can thereby serve a homeostatic function at rest, while reporting salient events when</p><p>they occur (Zhou etal., 2014; Ju etal., 2019; Negrello etal., 2019; Bina etal., 2021). In general, the</p><p>complex spikes therefore modulate the activity pattern of simple spikes, that organize motor output.</p><p>Apart from the cerebellum, the most important input areas to the inferior olive are the spinal</p><p>cord (Brown etal., 1977), periaqueductal gray (Brown etal., 1977; Swenson and Castro, 1983b;</p><p>VanderHorst etal., 2000), spinal trigeminal nucleus (Swenson and Castro, 1983b; Huerta etal.,</p><p>1985; Van Ham and Yeo, 1992; Yatim etal., 1996), and MDJ (de Zeeuw etal., 1989; Wang etal.,</p><p>2022). The MDJ is the main intermediate between the cerebral cortex and the inferior olive: it relays</p><p>input from the rostromedial and caudal parts of the cerebral cortex to the principal olive, and from</p><p>the rostrolateral parts of the cerebral cortex to the medial accessory olive (Wang etal., 2022). In</p><p>addition, the MDJ receives input from the spinal trigeminal nucleus (Kubo etal., 2018) and the cere-</p><p>bellar nuclei (De Zeeuw and Ruigrok, 1994; Wang etal., 2022). Input to the inferior olive comes</p><p>also from the two vagal sensory recipient nuclei: NTS (Loewy and Burton, 1978; McGovern etal.,</p><p>2015b) and paratrigeminal nucleus (McGovern etal., 2015b), as well as from rVRG (Swenson and</p><p>Castro, 1983b).</p><p>Other cerebellar inputs</p><p>Other cerebellar afferents could potentially contribute to respiratory control, although their precise</p><p>impact has not yet been studied. Hypothalamocerebellar connections are evolutionary preserved, but</p><p>more prominent in primates than in rodents (Dietrichs, 1984; Dietrichs etal., 1994). They originate</p><p>from several hypothalamic nuclei. In the context of this review, orexinergic fibers from the lateral</p><p>hypothalamus to</p><p>the cerebellar nuclei seem to be the most relevant, possibly in conjunction with a</p><p>projection from the paraventricular nucleus (Dietrichs, 1984; Haines etal., 1997; Zhu etal., 2006;</p><p>Yu etal., 2010; Çavdar etal., 2018a).</p><p>The locus coeruleus provides widespread noradrenergic innervation of the cerebellar cortex and</p><p>nuclei (Olson and Fuxe, 1971; Saigal etal., 1980a; Loughlin etal., 1986; Dietrichs, 1988; Szabadi,</p><p>2013), which could contribute to a general modulation of cerebellar output (Parfitt etal., 1988; Di</p><p>Mauro etal., 2013; Lippiello etal., 2015). Also both the dorsal and caudal raphe nuclei project to</p><p>the cerebellar cortex and nuclei, providing serotonergic input (Shinnar etal., 1975; Pierce etal.,</p><p>1977; Bishop and Ho, 1985; Fu etal., 2011), which can have profound impact on cerebellar function</p><p>(Kawashima, 2018). In mild forms of cerebellar ataxia, application of a serotonin receptor agonist</p><p>could alleviate various motor symptoms (Takei etal., 2005). These, and the other anatomical projec-</p><p>tions, are summarized in Figure7.</p><p>Cerebellar pathology</p><p>Although the role of the cerebellum in respiratory control is not yet settled in clinical settings, several</p><p>lines of evidence indicate a specific role in respiratory control. For instance, in some developmental</p><p>disorders, cerebellar abnormalities and respiratory dysfunction co- occur. Arguably, the most explicit</p><p>example is sudden infant death syndrome (SIDS), the unexplained abrupt death of infants, typically</p><p>during sleep, and most likely related to respiratory problems (Kelly etal., 1986; Kinney and Thach,</p><p>2009). Several studies link SIDS to cerebellar malformations. For instance, post- mortem analyses</p><p>relate SIDS to the presence of a wide external granular layer, which is a sign of developmental delay</p><p>of the cerebellum (Cruz- Sánchez etal., 1997; Lavezzi etal., 2007a). Also malformed and displaced</p><p>Purkinje cells were observed in several cases (Lavezzi etal., 2013; Matschke etal., 2020). Addition-</p><p>ally, the dentate- olivary system can be affected in SIDS (Lavezzi etal., 2007b). Note that malforma-</p><p>tions of the cerebellum and related structures have been demonstrated only in a subset of cases, as</p><p>SIDS can have multiple causes (Kinney and Thach, 2009; Figure8B).</p><p>Nevertheless, respiratory deficiencies and prolonged dependency on assisted or even mechanical</p><p>ventilation are frequently observed after cerebellar damage (Chen etal., 2005; Tsitsopoulos etal.,</p><p>2012; Lee etal., 2013; Arnone etal., 2017). Relatively mild aberrations in respiratory functions were</p><p>also noted in different types of spinocerebellar ataxia (Sriranjini etal., 2010), while in a mouse model</p><p>for spinocerebellar ataxia type 7 (SCA7) abnormal respiratory patterns were recorded (Figure8B–C).</p><p>Distinct types of spinocerebellar ataxia can affect various brain regions relevant for subconscious</p><p>control of respiration (Figure8B, Supplementary file 1). Finally, chronic cough may be one of the</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 32 of 67</p><p>B</p><p>C D</p><p>SCA2</p><p>SCA7</p><p>LV</p><p>Mo5</p><p>BPn</p><p>RF</p><p>TMN</p><p>Ck</p><p>SpV</p><p>Cx</p><p>IO</p><p>IO</p><p>Vest</p><p>7N NA</p><p>SCA3 SCA6</p><p>SCA7 CANVAS SIDS</p><p>LC</p><p>NTS</p><p>12N</p><p>LV</p><p>Mo5</p><p>BPn</p><p>RF Ck</p><p>SpV</p><p>Cx</p><p>CN</p><p>IO</p><p>Vest</p><p>7N NA</p><p>12N</p><p>CSC</p><p>LV</p><p>Cx</p><p>CN</p><p>LV</p><p>Cx</p><p>CN</p><p>CR</p><p>LV</p><p>Cx</p><p>LV</p><p>Cx</p><p>Affected</p><p>Not affected</p><p>CN</p><p>CN</p><p>BPn</p><p>12N</p><p>A Normal respiration</p><p>1</p><p>1 Cheyne-Stokes respiration</p><p>30 s</p><p>1 min</p><p>30 s</p><p>30 s</p><p>30 s</p><p>30 s</p><p>30 s</p><p>30 s</p><p>1 s 10 s</p><p>1</p><p>2</p><p>Apneusis2</p><p>3</p><p>Obstructive sleep apnea3</p><p>4</p><p>Biot’s respiration4</p><p>5</p><p>Respiratory arrest5</p><p>7</p><p>COPD7</p><p>6</p><p>Abnormal rhythmicity of respiration6</p><p>Stim</p><p>Figure 8. Pathology. (A) Based on the location of a lesion or structural abnormality, several types of disordered breathing can be expected. Cheyne-</p><p>Stokes respiration can result from a bilateral hemispheric or diencephalic lesion. Apneustic breathing has originally been described as the consequence</p><p>of a lesion at the level of the Kölliker- Fuse nucleus, but can probably also be caused by damage to surrounding tissue. A Biot’s respiration pattern can</p><p>develop after a lesion in the medulla, while a respiratory arrest occurs after damage to the pre- Bötzinger complex or the upper spinal cord. Obstructive</p><p>Figure 8 continued on next page</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 33 of 67</p><p>earliest symptoms of cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS),</p><p>and manifests in the absence of any perceived lung abnormalities (Infante etal., 2018).</p><p>Disordered breathing</p><p>Lesions, e.g., as a consequence of hemorrhage, at different levels of the brain can result in different</p><p>patterns of disordered breathing (Figure8A).</p><p>A bilateral hemispheric or diencephalic lesion can lead to Cheyne- Stokes respiration (Brown and</p><p>Plum, 1961). This is characterized by an undulating pattern of breathing with increasing depth and</p><p>frequency alternated with waves of shallow, slower breathing (Lorenzi- Filho etal., 1999).</p><p>Apneustic breathing, characterized by the absence or extreme delay of the inspiration to expira-</p><p>tion switch, has originally been described as the consequence of a lesion at the level of the Kölliker-</p><p>Fuse nucleus or the surrounding area (Marckwald, 1890; Lumsden, 1923; Caille etal., 1981; Mador</p><p>and Tobin, 1990).</p><p>Biot’s respiration is characterized by irregular periods of apnea alternated by several breaths of</p><p>identical depth (Farney et al., 2003; Wijdicks, 2007). Although, the irregularity of this breathing</p><p>pattern has led to the more common term ‘ataxic breathing’, the cerebellum is not primarily involved</p><p>in this type of respiration (Summ etal., 2022). However, Biot’s respiration pattern can result after a</p><p>lesion in the medulla (Summ etal., 2022). Biot’s respiration can also be a complication of long- term</p><p>opioid use (Farney etal., 2003).</p><p>Finally, a respiratory arrest can result after damage to the pre- Bötzinger complex or the upper</p><p>spinal cord (Ramirez etal., 1998; Schwarzacher etal., 2011; Arora etal., 2012).</p><p>Animal experiments have demonstrated that a lack of cerebellar output can lead to hyperregular</p><p>respiration (Liu etal., 2020; Taylor etal., 2022). Cerebellar patients, however, can also display the</p><p>opposite and present with irregular respiration (Ebert etal., 1995). Both, hyperregular as well as</p><p>irregular breathing, can be the consequence of impaired coordination of respiration with ongoing</p><p>behavior, as described for instance by Ebert etal., 1995.</p><p>While each of these brain areas result in a specific type of respiratory pattern. It must be noted</p><p>that a specific respiratory pattern can have multiple causes such as metabolic or cardiopulmonary</p><p>disorders. In addition, also peripheral diseases, like COPD (Jolley etal., 2009), can cause disordered</p><p>breathing. COPD is a chronic obstructive pulmonary condition characterized by abnormalities, espe-</p><p>cially narrowing of the small airways, of the lung which leads to limitation of the airflow.</p><p>Coordination of different behaviors</p><p>Throughout this review, we have discussed several behaviors that are tightly coupled to respiration,</p><p>such as those involved in airway clearance, feeding, and vocalization, as well as adjusting the rate of</p><p>ventilation to metabolic demands. In addition, also postural control and cardiovascular function are</p><p>linked to respiration. All pump muscles have dual functions; they do not only enable ventilation but</p><p>control also posture and movements (Ebert etal., 2000). The coordination between these different</p><p>tasks can be affected in cerebellar patients, displaying regular breathing at rest, but arhythmic</p><p>breathing during arm movements (Ebert etal., 1995).</p><p>sleep apnea typically shows interrupted breathing pattern during sleep. Cerebellar dysfunction can lead to more (left) or less (right) rhythmic respiration.</p><p>COPD patients show increased respiratory</p><p>rates and reduced passive expiration. It should be noted however that cardiopulmonary or metabolic causes</p><p>can also trigger all these respiratory patterns. Schematized traces of the tidal volume based on: Cheyne- Stokes respiration: Lorenzi- Filho etal., 1999;</p><p>Apneusis: Mador and Tobin, 1990; Biot’s respiration: Farney etal., 2003: Abnormal rhythmicity: Ebert etal., 1995; COPD (and normal): Jolley etal.,</p><p>2009. (B) Respiration- related brain areas demonstrating structural damage in several disorders, projected in the same notation as in Figure2A. Note</p><p>that SCA6 is mainly a cerebellar disorder. While CANVAS affects the cerebellum, the syndrome has also peripheral nerve involvement. In SIDS multiple</p><p>non- cerebellar causes have been described in post mortem studies. Some post mortem brain studies, however, have shown irregularly formed Purkinje</p><p>cells in the cerebellar cortex. See Supplementary file 1. (C) Apneustic breathing pattern in a mouse model of spinocerebellar ataxia type 7. Schematic</p><p>representation based on Fusco etal., 2021. (D) Electrical stimulation (Stim) adjacent to the fastigial nucleus induces a fastigial pressor response in an</p><p>anesthetized cat. During stimulation, the tidal volume is increased, and suppressed afterwards. Based on Miura and Takayama, 1988.</p><p>Figure 8 continued</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 34 of 67</p><p>Brain rhythms</p><p>Global and local rhythms abound in the brain, and they have been proposed to arrange long- range</p><p>synchrony and functional coupling, and thus play a vital role in motor control, sensory perception,</p><p>and conscious processing (Llinás, 1988; Khoshyomn etal., 1999; Mantini etal., 2007; Fries, 2015;</p><p>Lindeman etal., 2021). There is accumulating evidence that the respiratory rhythm can affect these</p><p>brain rhythms.</p><p>In the olfactory system, a coupling between respiration and rhythmic activity was noticed already a</p><p>long time ago (Adrian, 1942; Fontanini etal., 2003). As odorants are carried by air, each sniff brings</p><p>in new information, and can be considered as the temporal unit of olfaction (Kepecs etal., 2006;</p><p>Verhagen etal., 2007). Sniffing can, however, be more widely seen as patterning sensory processing,</p><p>as it, for instance, can dynamically synchronize with whisking (Welker, 1964; Cao etal., 2012a; Moore</p><p>etal., 2013). A hint that respiration is even more related to brain function comes from the observation</p><p>that humans tend to inhale at the start of a cognitive test, even if that does not involve olfaction (Perl</p><p>etal., 2019). This goes so far that a change in performance on a visuospatial task varies between</p><p>inspiration and expiration was observed in line with alteration in the EEG spectrum (Perl etal., 2019).</p><p>In fact, respiration- induced patterns in neural oscillations are ubiquitously observed throughout the</p><p>brain (Ito etal., 2014; Yanovsky etal., 2014; Heck etal., 2016; Zelano etal., 2016; Tort etal.,</p><p>2018; Kluger and Gross, 2021).</p><p>Changes in brain oscillations are by no means restricted to the frequency domain of respiration or</p><p>sniffing. Gamma oscillations (30–100Hz), which could reflect sensorimotor integration (Zagha etal.,</p><p>2013; Lindeman etal., 2021), can show changes in power that are phase- locked to the respiratory</p><p>rhythm (Ito etal., 2014; Kluger and Gross, 2021). Respiration can, therefore, serve as a scaffold for</p><p>sensory, sensorimotor and cognitive functions.</p><p>Cardiorespiratory function</p><p>Ventilation is only one aspect of the ultimate goal of respiration: getting oxygen to mitochondria</p><p>throughout the body, while maintaining balanced concentrations of O2 and CO2 in the blood. Hence,</p><p>respiration has to be coordinated with cardiac and vascular regulation, a process collectively known as</p><p>cardiorespiratory function. Ineffective cardiorespiratory function is an important predictor for devel-</p><p>opment of averse cardiovascular events and mortality, and has a higher predictive value than for</p><p>example, smoking or hypertension (Lee etal., 2010; Ross etal., 2016).</p><p>An example of the integrated control of cardiovascular and respiratory function is the fastigial</p><p>pressor response that entails simultaneous increases in heart rate and arterial pressure with changes</p><p>in ventilation (Miura and Reis, 1969; Achari and Downman, 1970; Lutherer and Williams, 1986;</p><p>Bradley etal., 1987; Xu and Frazier, 2000; Hernandez etal., 2004; Nisimaru, 2004). The specificity</p><p>of the fastigial nucleus for triggering the fastigial pressor response has been called into question,</p><p>arguing that it was actually caused by activation of the passing afferents to the lateral parabrachial</p><p>nucleus (Miura and Takayama, 1988). Yet, lesioning of the fastigial nuclei does lead to impairment of</p><p>the fastigial pressor response (Zhuang etal., 2008; Figure8D).</p><p>Cardiac and respiratory regulation are coupled on a cycle- by- cycle basis, as the heart rate</p><p>increases during inspiration, and decreases again during post- inspiration and active expira-</p><p>tion (Hirsch and Bishop, 1981; Elstad et al., 2018). Respiratory sinus arrhythmia is caused by</p><p>respiration- related fluctuations in activity of inhibitory preganglionic parasympathetic cardiac vagal</p><p>neurons that are primarily located in the nucleus ambiguus (McAllen and Spyer, 1976; Neff etal.,</p><p>2003; Dergacheva etal., 2010). The Kölliker- Fuse nucleus provides the phasic excitatory drive</p><p>to these cardiac premotor neurons that is required for respiratory sinus arrhythmia (Farmer etal.,</p><p>2016).</p><p>Stimulation of pro- opiomelanocortin- producing neurons in the NTS can augment respiratory sinus</p><p>arrhythmia, along with triggering suppressed breathing (bradypnea) and cardiac function (brady-</p><p>cardia) (Cerritelli etal., 2016). Pro- opiomelanocortin is a precursor of the opioid ß-endorphin, and</p><p>its impact of cardiovascular function can be mimicked by administered opioids (Walker etal., 2007;</p><p>Izrailtyan etal., 2018). The pro- opiomelanocortin neurons of the NTS directly target important respi-</p><p>ratory centers as the pre- Bötzinger complex, giving rise to bradypnea, the ambiguus nucleus, giving</p><p>rise to bradycardia, and the hypoglossal nucleus, rVRG, hypoglossal nucleus, and raphe obscurus</p><p>nucleus (Cerritelli etal., 2016; Figure5E).</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 35 of 67</p><p>Ideas and speculations</p><p>It is an attractive idea to have one or a few central pattern generator areas that control the respiratory</p><p>rhythm (Moore etal., 2013; Anderson and Ramirez, 2017). In particular, the pre- Bötzinger complex</p><p>is essential in this respect, as inspiration depends on it (Smith etal., 1991; Ramirez etal., 1998; Gray</p><p>etal., 2001; Tan etal., 2008; Schwarzacher etal., 2011; Ashhad and Feldman, 2020; Dhingra</p><p>etal., 2020). In this view, projections organized in a hierarchical fashion pass the respiratory control</p><p>from the pattern generator(s) to the respiratory motor neurons. Throughout this review we summarize,</p><p>however, that many other brain regions, including areas like the cerebellum and the limbic system</p><p>that are not classically considered to be respiratory areas, can affect respiratory control (Figure8).</p><p>As all these areas are interconnected (Figure7), the picture of an integrated network emerges. Thus,</p><p>depending on specific behavioral needs, these other brain regions may modulate or even overrule the</p><p>central pattern generators. This does not contradict the idea of central pattern generators being the</p><p>main players that control rhythmic respiration, but postulates that these pattern generators together</p><p>with their downstream areas are themselves embedded in a larger network that allows for flexibility</p><p>within the respiratory control system. We therefore suggest to view the respiratory control system</p><p>primarily as an integrated network, rather than a hierarchical system.</p><p>differ in strength or in their ratio between excitatory and inhibitory fibers, potentially introducing</p><p>asymmetries in motor activity (Biancardi etal., 2021). As detailed studies on monosynaptic projec-</p><p>tions are sparse in humans, we base our summary on animal studies, with earlier descriptions mostly</p><p>concerning cats, and more recent ones often performed in rats or mice (Figure2, Supplementary file</p><p>1). Connections labeled as sparse in the original papers are not included in this overview.</p><p>Many brain regions lack clear borders. In particular when different species are compared, this may</p><p>lead to some variations in the interpretation of anatomical projections. On top of this, one should also</p><p>take into account that anatomy and physiology do not always match. For instance, the inspiratory</p><p>neurons originally considered to be located in the pre- Bötzinger complex are actually distributed</p><p>around the region of the pre- Bötzinger complex and are partially intermingled with expiratory neurons</p><p>originally considered to be located in more caudal nuclei (Baertsch etal., 2019). When reading this</p><p>review, please note that the use of anatomical names is to help orient oneself, but in reality, borders</p><p>are often fuzzy. Genetic markers may help to define more homogeneous populations of neurons, and</p><p>when this information was available, we mention that in the text and figures.</p><p>Given that the neuronal mechanisms of respiratory rhythm generation are evolutionary well</p><p>conserved (Cinelli etal., 2013), inter- species differences are expected to be relatively minor (Kastner</p><p>and Gauthier, 2008). Important exceptions, however, are the elongation of the pharyngeal region,</p><p>and the development of complex muscle control of pharynx and mouth related to human speech</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 3 of 67</p><p>(Duncker, 2001). Since neural control of speech is outside the scope of this review, this will not be</p><p>further discussed.</p><p>Rhythmic respiration</p><p>Quiet breathing, or eupnea, is a rhythmic alternation between inspiration and passive expiration or</p><p>post- inspiration (Albaiceta etal., 2005; Figure1G). During periods with higher metabolic demand,</p><p>C</p><p>Ambiguus</p><p>nucleus</p><p>Valve</p><p>muscles</p><p>Pump</p><p>muscles</p><p>Thoracic</p><p>spinal</p><p>cord</p><p>Upper</p><p>airways</p><p>Abdomen</p><p>Intercostal</p><p>muscles</p><p>Diaphragm</p><p>Jaw</p><p>Nose</p><p>Tongue</p><p>Scalene muscles</p><p>Parasternal</p><p>intercostal muscles</p><p>External</p><p>intercostal muscles</p><p>Diaphragm</p><p>Sternocleidomastoid muscle</p><p>InspirationA</p><p>D E F</p><p>Sternocleidomastoid muscle</p><p>External intercostal muscles</p><p>Diaphragm</p><p>Rectus abdominis muscle</p><p>Tidal volume</p><p>Eupnea Hyperpnea Singing</p><p>Internal</p><p>intercostal muscles</p><p>Rectus abdominis</p><p>muscle</p><p>External oblique</p><p>muscles</p><p>Internal oblique</p><p>&</p><p>transversus abdominis</p><p>muscles</p><p>ExpirationB</p><p>Facial</p><p>nucleus</p><p>Phrenic</p><p>nucleus</p><p>Trigeminal</p><p>motor</p><p>nucleus</p><p>Hypo-</p><p>glossal</p><p>nucleus</p><p>G</p><p>Vo</p><p>lu</p><p>m</p><p>e</p><p>(l)</p><p>Ex</p><p>pir</p><p>at</p><p>ion</p><p>In</p><p>sp</p><p>ira</p><p>tio</p><p>n</p><p>1.2</p><p>1.0</p><p>0.8</p><p>0.4</p><p>0.6</p><p>0.2</p><p>0.0</p><p>Pressure (cm H2O)</p><p>0 302010 40</p><p>Exp. Exp.Insp. Insp. Exp.Insp. Insp.Exp. Exp. Exp.Insp. Insp. Insp.</p><p>Figure 1. Respiratory muscles and their innervation. (A) The main driving force for inspiration is delivered by the diaphragm in conjunction with the</p><p>external intercostal muscles. Other muscles that can enlarge the chest, such as the parasternal intercostal, sternocleidomastoid and scalene muscles,</p><p>may also contribute. (B) Active expiration involves contraction of the internal intercostal muscles together with abdominal muscles. (C) The pump</p><p>muscles are innervated from the spinal cord, with the phrenic nucleus housing the motor neurons of the diaphragm, and the thoracic spinal cord those</p><p>of the intercostal and abdominal muscles. (D) During regular breathing at rest (eupnea), inspiration is followed by a largely passive form of expiration</p><p>termed post- inspiration or early expiration. During post- inspiration, the abdominal muscles are not (strongly) involved. (E) When the metabolic demand</p><p>is higher, hyperpnea entails the activation of expiratory pump muscles during active expiration. (F) Prolonged post- inspiration, when required assisted</p><p>by active expiration, ensures a longer period with constant outflow of air as exploited by professional singers. (G) Intrapleural pressure- volume curve</p><p>during normal respiration in which the lung compliance is defined as the slope of the dotted line. Schematized data based on Bellani etal., 2018 and</p><p>Pitts etal., 2015 (D–E),Salomoni etal., 2016 (F),and Albaiceta etal., 2005 (G).Exp.=expiration, Insp.=inspiration.</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 4 of 67</p><p>hyperpnea occurs, which entails also active expiration (Pitts et al., 2015; Bellani et al., 2018;</p><p>Figure1D–E). It must be noted that the different respiratory muscles cover different aspects of the</p><p>respiratory cycle. As a result, a clear distinction between passive and active expiration cannot be made.</p><p>For example, during passive expiration, some of the expiratory muscles can be active, and active expi-</p><p>ration encompasses passive elastic contractions as well. In humans, post- inspiration can contribute</p><p>to longer periods of relatively constant air flow as required for speech or singing (MacLarnon and</p><p>Hewitt, 1999; Watson etal., 2012; Salomoni etal., 2016; Figure1F). Here, additional muscles</p><p>become active that are not active during solely post- inspiration. Thus, to what extent the respiratory</p><p>cycle within the brainstem can indeed be divided into rhythmogenic phases or whether these phases</p><p>FNIN</p><p>DN</p><p>LV</p><p>BotC preBotC</p><p>rVRG</p><p>cVRG</p><p>RTN/LPfN</p><p>Mo5</p><p>BPn</p><p>LC</p><p>PAG</p><p>LH</p><p>DR MPBN</p><p>RF</p><p>Ph</p><p>CSC</p><p>TMN</p><p>12N</p><p>NTS</p><p>CR</p><p>BST</p><p>Ce</p><p>Pa</p><p>DM</p><p>Sp5</p><p>Pa5</p><p>Ck</p><p>MDJ PPTg</p><p>Cx</p><p>AAV-RFP</p><p>AAV-retro-GFP</p><p>CN</p><p>IO</p><p>Vest</p><p>PiCo</p><p>7N</p><p>LPBN</p><p>NA</p><p>Limbic system</p><p>Cerebellum-related areas</p><p>Other sensory areasS</p><p>Motor areas</p><p>Central chemoreceptor areasCO2</p><p>Central pattern generators</p><p>Modulatory areas</p><p>Premotor areas</p><p>A</p><p>D</p><p>B</p><p>RN</p><p>FR</p><p>FR100 µmD</p><p>10 µm</p><p>E</p><p>4 µm</p><p>MAO</p><p>B</p><p>C</p><p>C</p><p>KF</p><p>Figure 2. Brain areas involved in subconscious respiratory control. (A) The subcortical areas involved in control of respiration were classified according</p><p>to their main function and plotted at their approximate location on a sagittal projection of the mouse brain. 7N = facial nucleus, 12N=hypoglossal</p><p>nucleus, BotC = Bötzinger complex, BPn = basalpons, BST = bed nucleus of the stria terminalis, Ce = central amygdala, Ck = Clarke’s column, CN</p><p>= cerebellar nuclei, CR = caudal raphe nucleus, CSC = cervical spinal cord, cVRG = caudal ventral respiratory group, Cx = cerebellar cortex, DM =</p><p>dorsomedial hypothalamus, DR = dorsal raphe nucleus, IO = inferior olive, KF = Kölliker- Fuse nucleus, LC = locus coeruleus, LH = lateral hypothalamus,</p><p>LPBN = lateral parabrachial nucleus, LPfN = lateral parafacial nucleus, MDJ = nuclei of the mesodiencephalic junction, Mo5=trigeminal motor</p><p>nucleus, MPBN = medial parabrachial nucleus, NA = nucleus ambiguus, NTS = nucleus of the solitary tract, Pa5=paratrigeminal nucleus, PAG =</p><p>periaqueductalgray, Pa = paraventricular hypothalamus, Ph = phrenic nucleus, PiCo = postinspiratory complex, PPTg = pedunculopontine tegmental</p><p>area, preBotC = pre- Bötzinger complex, RF = reticular formation, RTN = retrotrapezoid nucleus, rVRG = rostral ventral respiratory group, Sp5 = spinal</p><p>trigeminal nucleus, TMN = thoracic motor neurons, Vest = vestibular nuclei. Neural tracing can reveal monosynaptic connections between brain regions,</p><p>as illustrated with an example using an anterograde tracer in the cerebellar nuclei (B;see injection needle in panel A, AAV- RFP, pseudocolored in</p><p>magenta), and a retrograde tracer in the inferior olive (C;AAV- retro- GFP, pseudocolored in yellow). DN = dentate nucleus, FN = fastigial nucleus, IN =</p><p>interposed nucleus, MAO = medial accessory olive. (D) Both tracers can be observed in the MDJ, indicating the presence of monosynaptic projections</p><p>Consequently, we believe that</p><p>integration of behavioral conditions will add to the pathogenesis of respiratory disease.</p><p>Acknowledgements</p><p>The authors wish to thank Dr. Tom Ruigrok, Dr. Jos van der Geest and Ms. Liska Scheffers for discus-</p><p>sions at the start of this project, and Dr. Xiaolu Wang for adapting Figure2B–E. Financial support was</p><p>provided by the Stichting Coolsingel (Grant no. 514 [RSvdG]), the Netherlands Organization for Scien-</p><p>tific Research (NWOALW; CIDZ), the Dutch Organization for Medical Sciences (ZonMW; CIDZ; JJMP),</p><p>BIG (CIDZ), Medical Neuro- Delta (CIDZ), INTENSE LSH- NWO (CIDZ), ERC- adv and ERC- POC (CIDZ),</p><p>Van Raamsdonk- fonds (CIDZ), 3V- Fonds KNAW (CIDZ), Albinism Fonds NIN (CIDZ), Stichting Lijf en</p><p>Leven (JJMP), and by Health Holland to promote public private partnerships (TKI- LSH EMCLSH21017</p><p>[LWJB]).</p><p>Additional information</p><p>Funding</p><p>Funder Grant reference number Author</p><p>Stichting Coolsingel 514 Ruben S van der Giessen</p><p>Nederlandse Organisatie</p><p>voor Wetenschappelijk</p><p>Onderzoek</p><p>ALW Chris I De Zeeuw</p><p>ZonMw Chris I De Zeeuw</p><p>B.I.G. Chris I De Zeeuw</p><p>Medical Neuro-Delta Chris I De Zeeuw</p><p>INTENSE LSH-NWO Chris I De Zeeuw</p><p>European Research</p><p>Council</p><p>Advanced grant Chris I De Zeeuw</p><p>European Research</p><p>Council</p><p>POC Chris I De Zeeuw</p><p>Van Raamsdonk Fonds Chris I De Zeeuw</p><p>Koninklijke Nederlandse</p><p>Akademie van</p><p>Wetenschappen</p><p>3V Fonds Chris I De Zeeuw</p><p>Nederlands Herseninstituut Albinism Fonds Chris I De Zeeuw</p><p>Stichting Lijf en Leven Johan JM Pel</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 36 of 67</p><p>Funder Grant reference number Author</p><p>Health-Holland TKI-LSH EMCLSH21017 Laurens WJ Bosman</p><p>The funders had no role in study design, data collection and interpretation, or the</p><p>decision to submit the work for publication.</p><p>Author contributions</p><p>Friedrich Krohn, Conceptualization, Investigation, Visualization, Writing – original draft, Writing –</p><p>review and editing; Manuele Novello, Investigation, Visualization, Writing – original draft, Writing</p><p>– review and editing; Ruben S van der Giessen, Conceptualization, Funding acquisition, Investigation,</p><p>Visualization, Writing – original draft, Writing – review and editing; Chris I De Zeeuw, Funding acquisi-</p><p>tion, Writing – original draft, Writing – review and editing; Johan JM Pel, Conceptualization, Funding</p><p>acquisition, Investigation, Visualization, Writing – original draft, Project administration, Writing –</p><p>review and editing; Laurens WJ Bosman, Conceptualization, Supervision, Funding acquisition, Inves-</p><p>tigation, Visualization, Methodology, Writing – original draft, Project administration, Writing – review</p><p>and editing</p><p>Author ORCIDs</p><p>Friedrich Krohn http://orcid.org/0000-0001-8852-0753</p><p>Manuele Novello http://orcid.org/0000-0002-3622-3092</p><p>Ruben S van der Giessen http://orcid.org/0000-0001-8726-9587</p><p>Chris I De Zeeuw http://orcid.org/0000-0001-5628-8187</p><p>Johan JM Pel http://orcid.org/0000-0001-7618-0413</p><p>Laurens WJ Bosman http://orcid.org/0000-0001-9497-0566</p><p>Additional files</p><p>Supplementary files</p><p>• Supplementary file 1. List of studies demonstrating the existence of monosynaptic projections</p><p>between areas relevant for subconscious control of respiration. Connections that were identified</p><p>as sparse by the authors of these studies are not listed in this table. Note that the list of</p><p>neurotransmitters involved is not complete. 1 Tree shrew (Tupaia belangeri chinensis); 2 Rufous</p><p>horseshoe bat (Rhinolophus rouxi); 3 Rhesus monkey (Macaca mulatta); 4 Crab- eating macaque</p><p>(Macaca fascicularis); 5 Squirrel monkey (Saimiri sciureus). 5- HT = serotonin, A = anterograde,</p><p>aa = amino acids, AAV = adeno associated virus, ACh = acetyl choline, BDA = biotinylated</p><p>dextran amines, Biotinam = biotinamide, CRH = corticotropin- releasing hormone, CTb = cholera</p><p>toxin B subunit, cVRG = caudal part of the ventral respiratory group, DA = dopamine, Degen =</p><p>degeneration, DTR = dextran- Texas red, DY = diamidino yellow, EB = Evans blue, Exc = excitatory</p><p>(not specified which neurotransmitter), E- phys = electrophysiology, FB = fast blue, FG = fluorogold,</p><p>FR = fluoro ruby, GABA = γ-aminobutyric acid, GFP = green fluorescent protein, Glu = glutamate,</p><p>Gly = glycine, HSV = herpes simplex virus, HRP = horseradish peroxidase, Inh = inhibitory (not</p><p>specified which neurotransmitter), m = muscle, MDJ = nuclei of the meso- diencephalic junction, n =</p><p>nucleus or nuclei, NA = noradrenaline / norepinephrine, Nbiotin = neurobiotin, NMB = neuromedin</p><p>B, NT = neurotransmitter, NTS = nucleus tractus solitarii, Optogen = optogenetic stimulation, OXT</p><p>= oxytocin, PHA- L = Phaseolus vulgaris leucoagglutinin, PiCo = post- inspiration complex, PPTg</p><p>= pedunculopontine tegmental nucleus, PI = propidium iodide, POMC = pro- opiomelanocortin,</p><p>Pseudorab = Pseudorabies, R = retrograde, rVRG = rostral part of the ventral respiratory group,</p><p>term = terminalis, TMR = tetramethylrhodamine, VP = vasopressin, WGA = wheat germ agglutinin.</p><p>b – Respiratory control areas affected by pathology Summary of brain regions involved in respiratory</p><p>control and affected by selected diseases or syndromes. An area is listed in this table if a study</p><p>reported damage to that area in a majority of subjects included in that study. Case studies with a</p><p>single patient are not included in this table.</p><p>References</p><p>Abbott SBG, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, Guyenet PG. 2009. Photostimulation of</p><p>retrotrapezoid nucleus phox2b- expressing neurons in vivo produces long- lasting activation of breathing in rats.</p><p>The Journal of Neuroscience 29:5806–5819. DOI: https://doi.org/10.1523/JNEUROSCI.1106-09.2009, PMID:</p><p>19420248</p><p>https://doi.org/10.7554/eLife.83654</p><p>http://orcid.org/0000-0001-8852-0753</p><p>http://orcid.org/0000-0002-3622-3092</p><p>http://orcid.org/0000-0001-8726-9587</p><p>http://orcid.org/0000-0001-5628-8187</p><p>http://orcid.org/0000-0001-7618-0413</p><p>http://orcid.org/0000-0001-9497-0566</p><p>https://doi.org/10.1523/JNEUROSCI.1106-09.2009</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19420248</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 37 of 67</p><p>Abbott SBG, Stornetta RL, Coates MB, Guyenet PG. 2011. Phox2b- expressing neurons of the parafacial region</p><p>regulate breathing rate, inspiration, and expiration in conscious rats. The Journal of Neuroscience 31:16410–</p><p>16422. DOI: https://doi.org/10.1523/JNEUROSCI.3280-11.2011, PMID: 22072691</p><p>Abbott SBG, Souza G. 2021. Chemoreceptor mechanisms regulating CO2- induced arousal from sleep. The</p><p>Journal of Physiology 599:2559–2571. DOI: https://doi.org/10.1113/JP281305, PMID: 33759184</p><p>Achari NK, Downman CBB. 1970. Autonomic effector responses to stimulation of nucleus fastigius. The Journal</p><p>of Physiology 210:637–650. DOI: https://doi.org/10.1113/jphysiol.1970.sp009232, PMID: 5499816</p><p>Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. 2007. Neural substrates of awakening probed</p><p>with optogenetic control of hypocretin neurons. Nature 450:420–424. DOI: https://doi.org/10.1038/</p><p>nature06310, PMID: 17943086</p><p>Adrian ED. 1942. Olfactory reactions in the brain of the hedgehog. The Journal of Physiology 100:459–473.</p><p>DOI: https://doi.org/10.1113/jphysiol.1942.sp003955, PMID: 16991539</p><p>Albaiceta GM, Luyando LH, Parra D, Menendez R, Calvo J, Pedreira PR, Taboada F. 2005. Inspiratory vs.</p><p>expiratory pressure- volume curves to set end- expiratory pressure in acute lung injury. Intensive Care Medicine</p><p>31:1370–1378. DOI: https://doi.org/10.1007/s00134-005-2746-6, PMID: 16091965</p><p>Algera MH, Kamp J, van der Schrier R, van Velzen M, Niesters M, Aarts L, Dahan A, Olofsen E. 2019. Opioid-</p><p>induced respiratory depression in humans: a review of pharmacokinetic- pharmacodynamic modelling of</p><p>reversal. British Journal of Anaesthesia 122:e168–e179. DOI: https://doi.org/10.1016/j.bja.2018.12.023, PMID:</p><p>30915997</p><p>Amis TC, Brancatisano A, Tully A. 1995. Thyroid cartilage movements during breathing.</p><p>Journal of Applied</p><p>Physiology 78:441–448. DOI: https://doi.org/10.1152/jappl.1995.78.2.441, PMID: 7759411</p><p>Anderson TM, Garcia AJ, Baertsch NA, Pollak J, Bloom JC, Wei AD, Rai KG, Ramirez JM. 2016. A novel</p><p>excitatory network for the control of breathing. Nature 536:76–80. DOI: https://doi.org/10.1038/nature18944,</p><p>PMID: 27462817</p><p>Anderson TM, Ramirez JM. 2017. Respiratory rhythm generation: triple oscillator hypothesis. F1000Research</p><p>6:139. DOI: https://doi.org/10.12688/f1000research.10193.1, PMID: 28299192</p><p>Ando A, Smallwood D, McMahon M, Irving L, Mazzone SB, Farrell MJ. 2016. Neural correlates of cough</p><p>hypersensitivity in humans: Evidence for central sensitisation and dysfunctional inhibitory control. Thorax</p><p>71:323–329. DOI: https://doi.org/10.1136/thoraxjnl-2015-207425, PMID: 26860344</p><p>Anton F, Peppel P. 1991. Central projections of trigeminal primary afferents innervating the nasal mucosa: A</p><p>horseradish peroxidase study in the rat. Neuroscience 41:617–628. DOI: https://doi.org/10.1016/0306-4522(</p><p>91)90354-q, PMID: 1714553</p><p>Applegate CD, Kapp BS, Underwood MD, McNall CL. 1983. Autonomic and somatomotor effects of amygdala</p><p>central N. stimulation in awake rabbits. Physiology & Behavior 31:353–360. DOI: https://doi.org/10.1016/</p><p>0031-9384(83)90201-9, PMID: 6635005</p><p>Arch JJ, Craske MG. 2006. Mechanisms of mindfulness: Emotion regulation following a focused breathing</p><p>induction. Behaviour Research and Therapy 44:1849–1858. DOI: https://doi.org/10.1016/j.brat.2005.12.007,</p><p>PMID: 16460668</p><p>Arima Y, Yokota S, Fujitani M. 2019. Lateral parabrachial neurons innervate orexin neurons projecting to</p><p>brainstem arousal areas in the rat. Scientific Reports 9:2830. DOI: https://doi.org/10.1038/s41598-019-39063-y,</p><p>PMID: 30808976</p><p>Arita H, Kogo N, Koshiya N. 1987. Morphological and physiological properties of caudal medullary expiratory</p><p>neurons of the cat. Brain Research 401:258–266. DOI: https://doi.org/10.1016/0006-8993(87)91410-7, PMID:</p><p>3028576</p><p>Arnone GD, Esfahani DR, Wonais M, Kumar P, Scheer JK, Alaraj A, Amin- Hanjani S, Charbel FT, Mehta AI. 2017.</p><p>Surgery for cerebellar hemorrhage: a national surgical quality improvement program database analysis of</p><p>patient outcomes and factors associated with 30- day mortality and prolonged ventilation. World Neurosurgery</p><p>106:543–550. DOI: https://doi.org/10.1016/j.wneu.2017.07.041, PMID: 28735123</p><p>Arora S, Flower O, Murray NPS, Lee BB. 2012. Respiratory care of patients with cervical spinal cord injury: a</p><p>review. Critical Care and Resuscitation 14:64–73 PMID: 22404065.</p><p>Ashhad S, Feldman JL. 2020. Emergent elements of inspiratory rhythmogenesis: network synchronization and</p><p>synchrony propagation. Neuron 106:482–497.. DOI: https://doi.org/10.1016/j.neuron.2020.02.005, PMID:</p><p>32130872</p><p>Ashhad S, Kam K, Del Negro CA, Feldman JL. 2022. Breathing rhythm and pattern and their influence on</p><p>emotion. Annual Review of Neuroscience 45:223–247. DOI: https://doi.org/10.1146/annurev-neuro-090121-</p><p>014424, PMID: 35259917</p><p>Ausborn J, Koizumi H, Barnett WH, John TT, Zhang R, Molkov YI, Smith JC, Rybak IA. 2018. Organization of the</p><p>core respiratory network: insights from optogenetic and modeling studies. PLOS Computational Biology</p><p>14:e1006148. DOI: https://doi.org/10.1371/journal.pcbi.1006148, PMID: 29698394</p><p>Avraam J, Wu Y, Richerson GB. 2020. Perinatal nicotine reduces chemosensitivity of medullary 5- HT neurons</p><p>after maturation in culture. Neuroscience 446:80–93. DOI: https://doi.org/10.1016/j.neuroscience.2020.08.012,</p><p>PMID: 32818601</p><p>Backman SB, Anders C, Ballantyne D, Röhrig N, Camerer H, Mifflin S, Jordan D, Dickhaus H, Spyer KM,</p><p>Richter DW. 1984. Evidence for a monosynaptic connection between slowly adapting pulmonary stretch</p><p>receptor afferents and inspiratory beta neurones. Pflugers Archiv 402:129–136. DOI: https://doi.org/10.1007/</p><p>BF00583324, PMID: 6527937</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1523/JNEUROSCI.3280-11.2011</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22072691</p><p>https://doi.org/10.1113/JP281305</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33759184</p><p>https://doi.org/10.1113/jphysiol.1970.sp009232</p><p>http://www.ncbi.nlm.nih.gov/pubmed/5499816</p><p>https://doi.org/10.1038/nature06310</p><p>https://doi.org/10.1038/nature06310</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17943086</p><p>https://doi.org/10.1113/jphysiol.1942.sp003955</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16991539</p><p>https://doi.org/10.1007/s00134-005-2746-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16091965</p><p>https://doi.org/10.1016/j.bja.2018.12.023</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30915997</p><p>https://doi.org/10.1152/jappl.1995.78.2.441</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7759411</p><p>https://doi.org/10.1038/nature18944</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27462817</p><p>https://doi.org/10.12688/f1000research.10193.1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28299192</p><p>https://doi.org/10.1136/thoraxjnl-2015-207425</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26860344</p><p>https://doi.org/10.1016/0306-4522(91)90354-q</p><p>https://doi.org/10.1016/0306-4522(91)90354-q</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1714553</p><p>https://doi.org/10.1016/0031-9384(83)90201-9</p><p>https://doi.org/10.1016/0031-9384(83)90201-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6635005</p><p>https://doi.org/10.1016/j.brat.2005.12.007</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16460668</p><p>https://doi.org/10.1038/s41598-019-39063-y</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30808976</p><p>https://doi.org/10.1016/0006-8993(87)91410-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3028576</p><p>https://doi.org/10.1016/j.wneu.2017.07.041</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28735123</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22404065</p><p>https://doi.org/10.1016/j.neuron.2020.02.005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32130872</p><p>https://doi.org/10.1146/annurev-neuro-090121-014424</p><p>https://doi.org/10.1146/annurev-neuro-090121-014424</p><p>http://www.ncbi.nlm.nih.gov/pubmed/35259917</p><p>https://doi.org/10.1371/journal.pcbi.1006148</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29698394</p><p>https://doi.org/10.1016/j.neuroscience.2020.08.012</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32818601</p><p>https://doi.org/10.1007/BF00583324</p><p>https://doi.org/10.1007/BF00583324</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6527937</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 38 of 67</p><p>Baek M, Menon V, Jessell TM, Hantman AW, Dasen JS. 2019. Molecular logic of spinocerebellar tract neuron</p><p>diversity and connectivity. Cell Reports 27:2620–2635.. DOI: https://doi.org/10.1016/j.celrep.2019.04.113,</p><p>PMID: 31141687</p><p>Baertsch NA, Baertsch HC, Ramirez JM. 2018. The interdependence of excitation and inhibition for the control</p><p>of dynamic breathing rhythms. Nature Communications 9:843. DOI: https://doi.org/10.1038/s41467-018-</p><p>03223-x, PMID: 29483589</p><p>Baertsch NA, Severs LJ, Anderson TM, Ramirez JM. 2019. A spatially dynamic network underlies the generation</p><p>of inspiratory behaviors. PNAS 116:7493–7502. DOI: https://doi.org/10.1073/pnas.1900523116, PMID:</p><p>30918122</p><p>Bagaev V, Aleksandrov V. 2006. Visceral- related area in the rat insular cortex. Autonomic Neuroscience 125:16–</p><p>21. DOI: https://doi.org/10.1016/j.autneu.2006.01.006, PMID: 16516558</p><p>Baille G, Perez T, Devos D, Deken V, Defebvre L, Moreau C. 2018. Early occurrence of inspiratory muscle</p><p>weakness in parkinson’s disease. PLOS ONE 13:e0190400. DOI: https://doi.org/10.1371/journal.pone.0190400,</p><p>PMID: 29329328</p><p>Bandler R, Keay KA, Floyd N, Price J. 2000. Central circuits mediating patterned autonomic activity during active</p><p>vs. passive emotional coping. Brain Research Bulletin 53:95–104. DOI: https://doi.org/10.1016/s0361-9230(00)</p><p>00313-0, PMID: 11033213</p><p>Barbier M, González JA, Houdayer C, Burdakov D, Risold P- Y, Croizier S. 2021. Projections from the dorsomedial</p><p>division of the bed nucleus of the stria terminalis to hypothalamic nuclei in the mouse. The Journal of</p><p>Comparative Neurology 529:929–956. DOI: https://doi.org/10.1002/cne.24988, PMID: 32678476</p><p>Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, Bottacchi E, Cannas A, Ceravolo G,</p><p>Ceravolo R, Cicarelli G, Gaglio RM, Giglia RM, Iemolo F, Manfredi M, Meco G, Nicoletti</p><p>A, Pederzoli M,</p><p>Petrone A, Pisani A, etal. 2009. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their</p><p>impact on quality of life in Parkinson’s disease. Movement Disorders 24:1641–1649. DOI: https://doi.org/10.</p><p>1002/mds.22643, PMID: 19514014</p><p>Bartlett D, Leiter JC. 2012. Coordination of breathing with nonrespiratory activities. Comprehensive Physiology</p><p>2:1387–1415. DOI: https://doi.org/10.1002/cphy.c110004, PMID: 23798304</p><p>Bassal M, Bianchi AL. 1982. Inspiratory onset or termination induced by electrical stimulation of the brain.</p><p>Respiration Physiology 50:23–40. DOI: https://doi.org/10.1016/0034-5687(82)90004-4, PMID: 7178703</p><p>Bassetti CLA, Adamantidis A, Burdakov D, Han F, Gay S, Kallweit U, Khatami R, Koning F, Kornum BR,</p><p>Lammers GJ, Liblau RS, Luppi PH, Mayer G, Pollmächer T, Sakurai T, Sallusto F, Scammell TE, Tafti M,</p><p>Dauvilliers Y. 2019. Narcolepsy- clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nature</p><p>Reviews. Neurology 15:519–539. DOI: https://doi.org/10.1038/s41582-019-0226-9, PMID: 31324898</p><p>Bassi M, Furuya WI, Zoccal DB, Menani JV, Colombari DSA, Mulkey DK, Colombari E. 2016. Facilitation of</p><p>breathing by leptin effects in the central nervous system. The Journal of Physiology 594:1617–1625. DOI:</p><p>https://doi.org/10.1113/JP270308, PMID: 26095748</p><p>Batini C, Buisseret- Delmas C, Corvisier J, Hardy O, Jassik- Gerschenfeld D. 1978. Brain stem nuclei giving fibers</p><p>to lobules VI and VII of the cerebellar vermis. Brain Research 153:241–261. DOI: https://doi.org/10.1016/</p><p>0006-8993(78)90405-5, PMID: 80249</p><p>Bayliss DA, Barhanin J, Gestreau C, Guyenet PG. 2015. The role of pH- sensitive task channels in central</p><p>respiratory chemoreception. Pflugers Archiv 467:917–929. DOI: https://doi.org/10.1007/s00424-014-1633-9,</p><p>PMID: 25346157</p><p>Beckstead RM, Morse JR, Norgren R. 1980. The nucleus of the solitary tract in the monkey: projections to the</p><p>thalamus and brain stem nuclei. The Journal of Comparative Neurology 190:259–282. DOI: https://doi.org/10.</p><p>1002/cne.901900205, PMID: 6769981</p><p>Behan M, Thomas CF. 2005. Sex hormone receptors are expressed in identified respiratory motoneurons in male</p><p>and female rats. Neuroscience 130:725–734. DOI: https://doi.org/10.1016/j.neuroscience.2004.09.058, PMID:</p><p>15590155</p><p>Beitz AJ. 1989. Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer</p><p>of the superior colliculus of the rat. Brain Research Bulletin 23:25–35. DOI: https://doi.org/10.1016/0361-9230(</p><p>89)90159-7, PMID: 2478264</p><p>Bellani G, Bronco A, Arrigoni Marocco S, Pozzi M, Sala V, Eronia N, Villa G, Foti G, Tagliabue G, Eger M,</p><p>Pesenti A. 2018. Measurement of diaphragmatic electrical activity by surface electromyography in intubated</p><p>subjects and its relationship with inspiratory effort. Respiratory Care 63:1341–1349. DOI: https://doi.org/10.</p><p>4187/respcare.06176, PMID: 30389829</p><p>Berger AJ. 1977. Dorsal respiratory group neurons in the medulla of cat: spinal projections, responses to lung</p><p>inflation and superior laryngeal nerve stimulation. Brain Research 135:231–254. DOI: https://doi.org/10.1016/</p><p>0006-8993(77)91028-9, PMID: 922474</p><p>Berger AJ, Cooney KA. 1982. Ventilatory effects of kainic acid injection of the ventrolateral solitary nucleus.</p><p>Journal of Applied Physiology 52:131–140. DOI: https://doi.org/10.1152/jappl.1982.52.1.131, PMID: 6800984</p><p>Berteotti C, Liguori C, Pace M. 2021. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy</p><p>but has far- reaching implications for neurological disorders. The European Journal of Neuroscience 53:1136–</p><p>1154. DOI: https://doi.org/10.1111/ejn.15077, PMID: 33290595</p><p>Bevans CG, Harris AL. 1999. Regulation of connexin channels by ph direct action of the protonated form of</p><p>taurine and other aminosulfonates. The Journal of Biological Chemistry 274:3711–3719. DOI: https://doi.org/</p><p>10.1074/jbc.274.6.3711, PMID: 9920923</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1016/j.celrep.2019.04.113</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31141687</p><p>https://doi.org/10.1038/s41467-018-03223-x</p><p>https://doi.org/10.1038/s41467-018-03223-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29483589</p><p>https://doi.org/10.1073/pnas.1900523116</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30918122</p><p>https://doi.org/10.1016/j.autneu.2006.01.006</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16516558</p><p>https://doi.org/10.1371/journal.pone.0190400</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29329328</p><p>https://doi.org/10.1016/s0361-9230(00)00313-0</p><p>https://doi.org/10.1016/s0361-9230(00)00313-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11033213</p><p>https://doi.org/10.1002/cne.24988</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32678476</p><p>https://doi.org/10.1002/mds.22643</p><p>https://doi.org/10.1002/mds.22643</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19514014</p><p>https://doi.org/10.1002/cphy.c110004</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23798304</p><p>https://doi.org/10.1016/0034-5687(82)90004-4</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7178703</p><p>https://doi.org/10.1038/s41582-019-0226-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31324898</p><p>https://doi.org/10.1113/JP270308</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26095748</p><p>https://doi.org/10.1016/0006-8993(78)90405-5</p><p>https://doi.org/10.1016/0006-8993(78)90405-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/80249</p><p>https://doi.org/10.1007/s00424-014-1633-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25346157</p><p>https://doi.org/10.1002/cne.901900205</p><p>https://doi.org/10.1002/cne.901900205</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6769981</p><p>https://doi.org/10.1016/j.neuroscience.2004.09.058</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15590155</p><p>https://doi.org/10.1016/0361-9230(89)90159-7</p><p>https://doi.org/10.1016/0361-9230(89)90159-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2478264</p><p>https://doi.org/10.4187/respcare.06176</p><p>https://doi.org/10.4187/respcare.06176</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30389829</p><p>https://doi.org/10.1016/0006-8993(77)91028-9</p><p>https://doi.org/10.1016/0006-8993(77)91028-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/922474</p><p>https://doi.org/10.1152/jappl.1982.52.1.131</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6800984</p><p>https://doi.org/10.1111/ejn.15077</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33290595</p><p>https://doi.org/10.1074/jbc.274.6.3711</p><p>https://doi.org/10.1074/jbc.274.6.3711</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9920923</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 39 of 67</p><p>Biancardi V, Bícego KC, Almeida MC, Gargaglioni LH. 2008. Locus coeruleus noradrenergic neurons and CO2</p><p>drive to breathing. Pflugers Archiv 455:1119–1128. DOI: https://doi.org/10.1007/s00424-007-0338-8, PMID:</p><p>17851683</p><p>Biancardi V, Saini J, Pageni A, Prashaad M H, Funk GD, Pagliardini S. 2021. Mapping of the excitatory, inhibitory,</p><p>and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats.</p><p>The Journal of Comparative Neurology 529:853–884. DOI: https://doi.org/10.1002/cne.24984, PMID:</p><p>32656849</p><p>Bianchi R, Corsetti G, Rodella L, Tredici G, Gioia M. 1998. Supraspinal connections and termination patterns of</p><p>the parabrachial complex determined by the biocytin anterograde tract- tracing technique in the rat. Journal of</p><p>Anatomy 193 (Pt 3):417–430. DOI: https://doi.org/10.1046/j.1469-7580.1998.19330417.x, PMID: 9877297</p><p>Bienkowski MS, Rinaman L. 2013. Common and distinct neural inputs to the medial central nucleus of the</p><p>amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Structure & Function 218:187–</p><p>208. DOI: https://doi.org/10.1007/s00429-012-0393-6, PMID: 22362201</p><p>Bina L, Romano V, Hoogland TM, Bosman LWJ, De Zeeuw CI. 2021. Purkinje cells translate subjective salience</p><p>into readiness to act and choice performance. Cell Reports 37:110116. DOI: https://doi.org/10.1016/j.celrep.</p><p>2021.110116, PMID: 34910904</p><p>Bishop GA, Ho RH. 1985. The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain</p><p>Research 331:195–207. DOI: https://doi.org/10.1016/0006-8993(85)91545-8, PMID: 3986565</p><p>Bochorishvili G, Stornetta RL, Coates MB, Guyenet PG. 2012. Pre- Bötzinger complex receives glutamatergic</p><p>innervation from galaninergic and other retrotrapezoid nucleus neurons. The Journal of Comparative</p><p>Neurology 520:1047–1061. DOI: https://doi.org/10.1002/cne.22769, PMID: 21935944</p><p>Boers J, Kirkwood PA, de Weerd H, Holstege G. 2006. Ultrastructural evidence for direct excitatory</p><p>retroambiguus projections to cutaneous trunci and abdominal external oblique muscle motoneurons in the</p><p>cat. Brain Research Bulletin 68:249–256. DOI: https://doi.org/10.1016/j.brainresbull.2005.08.011, PMID:</p><p>16377430</p><p>Boggs DF, Tenney SM. 1984. Scaling respiratory pattern and respiratory “ drive. ” Respiration Physiology</p><p>58:245–251. DOI: https://doi.org/10.1016/0034-5687(84)90001-x, PMID: 6528102</p><p>Bondarenko E, Beig MI, Hodgson DM, Braga VA, Nalivaiko E. 2015. Blockade of the Dorsomedial Hypothalamus</p><p>and the perifornical area inhibits respiratory responses to arousing and stressful stimuli. American Journal of</p><p>Physiology. Regulatory, Integrative and Comparative Physiology 308:R816–R822. DOI: https://doi.org/10.1152/</p><p>ajpregu.00415.2014, PMID: 25761699</p><p>Bonham AC, McCrimmon DR. 1990. Neurones in a discrete region of the nucleus tractus solitarius are required</p><p>for the breuer- hering reflex in rat. The Journal of Physiology 427:261–280. DOI: https://doi.org/10.1113/</p><p>jphysiol.1990.sp018171, PMID: 2213599</p><p>Borodovitsyna O, Duffy BC, Pickering AE, Chandler DJ. 2020. Anatomically and functionally distinct locus</p><p>coeruleus efferents mediate opposing effects on anxiety- like behavior. Neurobiology of Stress 13:100284. DOI:</p><p>https://doi.org/10.1016/j.ynstr.2020.100284, PMID: 33344735</p><p>Bosman LWJ, Konnerth A. 2009. Activity- Dependent plasticity of developing climbing fiber- Purkinje cell</p><p>synapses. Neuroscience 162:612–623. DOI: https://doi.org/10.1016/j.neuroscience.2009.01.032, PMID:</p><p>19302832</p><p>Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WHT, Ju C, Gong W,</p><p>Koekkoek SKE, De Zeeuw CI. 2011. Anatomical pathways involved in generating and sensing rhythmic whisker</p><p>movements. Frontiers in Integrative Neuroscience 5:53. DOI: https://doi.org/10.3389/fnint.2011.00053, PMID:</p><p>22065951</p><p>Boulenguez P, Gauthier P, Kastner A. 2007. Respiratory neuron subpopulations and pathways potentially</p><p>involved in the reactivation of phrenic motoneurons after C2 hemisection. Brain Research 1148:96–104. DOI:</p><p>https://doi.org/10.1016/j.brainres.2007.02.060, PMID: 17379194</p><p>Bradley DJ, Pascoe JP, Paton JFR, Spyer KM. 1987. Cardiovascular and respiratory responses evoked from the</p><p>posterior cerebellar cortex and fastigial nucleus in the cat. The Journal of Physiology 393:107–121. DOI:</p><p>https://doi.org/10.1113/jphysiol.1987.sp016813, PMID: 3446792</p><p>Breton- Provencher V, Sur M. 2019. Active control of arousal by a locus coeruleus gabaergic circuit. Nature</p><p>Neuroscience 22:218–228. DOI: https://doi.org/10.1038/s41593-018-0305-z, PMID: 30643295</p><p>Breuer J. 1868. Die selbststeuerung der athmung durch den nervus vagus. Sitzber Deut Akad Wiss Wien</p><p>58:1–29.</p><p>Brodal P, Bjaalie JG. 1992. Organization of the pontine nuclei. Neuroscience Research 13:83–118. DOI: https://</p><p>doi.org/10.1016/0168-0102(92)90092-q, PMID: 1374872</p><p>Brown HW, Plum F. 1961. The neurologic basis of cheyne- stokes respiration. The American Journal of Medicine</p><p>30:849–860. DOI: https://doi.org/10.1016/0002-9343(61)90173-5</p><p>Brown JT, Chan- Palay V, Palay SL. 1977. A study of afferent input to the inferior olivary complex in the rat by</p><p>retrograde axonal transport of horseradish peroxidase. The Journal of Comparative Neurology 176:1–22. DOI:</p><p>https://doi.org/10.1002/cne.901760102, PMID: 903429</p><p>Brown RP, Gerbarg PL. 2009. Yoga breathing, meditation, and longevity. Annals of the New York Academy of</p><p>Sciences 1172:54–62. DOI: https://doi.org/10.1111/j.1749-6632.2009.04394.x, PMID: 19735239</p><p>Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, Litt M. 1994. Episodic ataxia/myokymia</p><p>syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nature Genetics</p><p>8:136–140. DOI: https://doi.org/10.1038/ng1094-136, PMID: 7842011</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1007/s00424-007-0338-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17851683</p><p>https://doi.org/10.1002/cne.24984</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32656849</p><p>https://doi.org/10.1046/j.1469-7580.1998.19330417.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9877297</p><p>https://doi.org/10.1007/s00429-012-0393-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22362201</p><p>https://doi.org/10.1016/j.celrep.2021.110116</p><p>https://doi.org/10.1016/j.celrep.2021.110116</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34910904</p><p>https://doi.org/10.1016/0006-8993(85)91545-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3986565</p><p>https://doi.org/10.1002/cne.22769</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21935944</p><p>https://doi.org/10.1016/j.brainresbull.2005.08.011</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16377430</p><p>https://doi.org/10.1016/0034-5687(84)90001-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6528102</p><p>https://doi.org/10.1152/ajpregu.00415.2014</p><p>https://doi.org/10.1152/ajpregu.00415.2014</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25761699</p><p>https://doi.org/10.1113/jphysiol.1990.sp018171</p><p>https://doi.org/10.1113/jphysiol.1990.sp018171</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2213599</p><p>https://doi.org/10.1016/j.ynstr.2020.100284</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33344735</p><p>https://doi.org/10.1016/j.neuroscience.2009.01.032</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19302832</p><p>https://doi.org/10.3389/fnint.2011.00053</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22065951</p><p>https://doi.org/10.1016/j.brainres.2007.02.060</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17379194</p><p>https://doi.org/10.1113/jphysiol.1987.sp016813</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3446792</p><p>https://doi.org/10.1038/s41593-018-0305-z</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30643295</p><p>https://doi.org/10.1016/0168-0102(92)90092-q</p><p>https://doi.org/10.1016/0168-0102(92)90092-q</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1374872</p><p>https://doi.org/10.1016/0002-9343(61)90173-5</p><p>https://doi.org/10.1002/cne.901760102</p><p>http://www.ncbi.nlm.nih.gov/pubmed/903429</p><p>https://doi.org/10.1111/j.1749-6632.2009.04394.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19735239</p><p>https://doi.org/10.1038/ng1094-136</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7842011</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 40 of 67</p><p>Bruinstroop E, Cano G, Vanderhorst V, Cavalcante JC, Wirth J, Sena- Esteves M, Saper CB. 2012. Spinal</p><p>projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. The Journal of</p><p>Comparative Neurology 520:1985–2001. DOI: https://doi.org/10.1002/cne.23024, PMID: 22173709</p><p>Brust RD, Corcoran AE, Richerson GB, Nattie E, Dymecki SM. 2014. Functional and developmental identification</p><p>of a molecular subtype of brain serotonergic neuron specialized to regulate breathing dynamics. Cell Reports</p><p>9:2152–2165. DOI: https://doi.org/10.1016/j.celrep.2014.11.027, PMID: 25497093</p><p>Bryant TH, Yoshida S, de Castro D, Lipski J. 1993. Expiratory neurons of the Bötzinger complex in the rat: a</p><p>morphological study following intracellular labeling with biocytin. The Journal of Comparative Neurology</p><p>335:267–282. DOI: https://doi.org/10.1002/cne.903350210, PMID: 8227518</p><p>Burke PGR, Kanbar R, Basting TM, Hodges WM, Viar KE, Stornetta RL, Guyenet PG. 2015. State- Dependent</p><p>control of breathing by the retrotrapezoid nucleus. The Journal of Physiology 593:2909–2926. DOI: https://doi.</p><p>org/10.1113/JP270053, PMID: 25820491</p><p>Butler JE, Hudson AL, Gandevia SC. 2014. The neural control of human inspiratory muscles. Progress in Brain</p><p>Research 209:295–308. DOI: https://doi.org/10.1016/B978-0-444-63274-6.00015-1, PMID: 24746054</p><p>Buttry JL, Goshgarian HG. 2015. WGA- alexa transsynaptic labeling in the phrenic motor system of adult rats:</p><p>intrapleural injection versus intradiaphragmatic injection. Journal of Neuroscience Methods 241:137–145. DOI:</p><p>https://doi.org/10.1016/j.jneumeth.2014.12.013, PMID: 25555356</p><p>Caballero- Eraso C, Shin MK, Pho H, Kim LJ, Pichard LE, Wu ZJ, Gu C, Berger S, Pham L, Yeung HYB,</p><p>Shirahata M, Schwartz AR, Tang</p><p>WYW, Sham JSK, Polotsky VY. 2019. Leptin acts in the carotid bodies to</p><p>increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. The</p><p>Journal of Physiology 597:151–172. DOI: https://doi.org/10.1113/JP276900, PMID: 30285278</p><p>Caille D, Vibert JF, Hugelin A. 1981. Apneusis and apnea after parabrachial or Kölliker- Fuse N. lesion; influence</p><p>of wakefulness. Respiration Physiology 45:79–95. DOI: https://doi.org/10.1016/0034-5687(81)90051-7, PMID:</p><p>7280390</p><p>Calton M, Dickson P, Harper RM, Goldowitz D, Mittleman G. 2014. Impaired hypercarbic and hypoxic responses</p><p>from developmental loss of cerebellar purkinje neurons: implications for sudden infant death syndrome.</p><p>Cerebellum 13:739–750. DOI: https://doi.org/10.1007/s12311-014-0592-1, PMID: 25132500</p><p>Calton MA, Howard JR, Harper RM, Goldowitz D, Mittleman G. 2016. The cerebellum and SIDS: disordered</p><p>breathing in a mouse model of developmental cerebellar purkinje cell loss during recovery from hypercarbia.</p><p>Frontiers in Neurology 7:78. DOI: https://doi.org/10.3389/fneur.2016.00078, PMID: 27242661</p><p>Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ. 2004. Identification of the tracheal and</p><p>laryngeal afferent neurones mediating cough in anaesthetized guinea- pigs. The Journal of Physiology 557:543–</p><p>558. DOI: https://doi.org/10.1113/jphysiol.2003.057885, PMID: 15004208</p><p>Canning BJ, Spina D. 2009. Sensory nerves acid- sensitive ion channels and receptors. Canning BJ (Ed). Handb</p><p>Exp Pharmacol. Springer. p. 283–332. DOI: https://doi.org/10.1007/978-3-540-79090-7</p><p>Canning BJ, Chang AB, Bolser DC, Smith JA, Mazzone SB, McGarvey L, Adams TM, Altman KW, Barker AF,</p><p>Birring SS, Blackhall F, Bolser DC, Boulet LP, Braman SS, Brightling C, Callahan- Lyon P, Canning B, Chang AB,</p><p>Coeytaux R, Cowley T, etal. 2014. Anatomy and neurophysiology of cough. CHEST 146:1633–1648. DOI:</p><p>https://doi.org/10.1378/chest.14-1481</p><p>Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI. 2017. The sleeping cerebellum. Trends in</p><p>Neurosciences 40:309–323. DOI: https://doi.org/10.1016/j.tins.2017.03.001, PMID: 28431742</p><p>Cao Y, Maran SK, Dhamala M, Jaeger D, Heck DH. 2012a. Behavior- related pauses in simple- spike activity of</p><p>mouse purkinje cells are linked to spike rate modulation. The Journal of Neuroscience 32:8678–8685. DOI:</p><p>https://doi.org/10.1523/JNEUROSCI.4969-11.2012, PMID: 22723707</p><p>Cao Y, Roy S, Sachdev RNS, Heck DH. 2012b. Dynamic correlation between whisking and breathing rhythms in</p><p>mice. The Journal of Neuroscience 32:1653–1659. DOI: https://doi.org/10.1523/JNEUROSCI.4395-11.2012,</p><p>PMID: 22302807</p><p>Caous CA, de Sousa Buck H, Lindsey CJ. 2001. Neuronal connections of the paratrigeminal nucleus: A</p><p>topographic analysis of neurons projecting to bulbar, pontine and thalamic nuclei related to cardiovascular,</p><p>respiratory and sensory functions. Autonomic Neuroscience 94:14–24. DOI: https://doi.org/10.1016/s1566-</p><p>0702(01)00338-1, PMID: 11775703</p><p>Carrier DR. 1984. The energetic paradox of running and hominid evolution. Current Anthropology 25:483–495.</p><p>Carrive P. 1993. The periaqueductal gray and defensive behavior: functional representation and neuronal</p><p>organization. Behavioural Brain Research 58:27–47. DOI: https://doi.org/10.1016/0166-4328(93)90088-8,</p><p>PMID: 8136048</p><p>Carvalho O, Gonçalves C. 2011. Comparative physiology of the respiratory system in the animal kingdom. The</p><p>Open Biology Journal 4:35–46. DOI: https://doi.org/10.2174/1874196701104010035</p><p>Çavdar S, Özgur M, Kuvvet Y, Bay HH. 2018a. The cerebello- hypothalamic and hypothalamo- cerebellar pathways</p><p>via superior and middle cerebellar peduncle in the rat. Cerebellum 17:517–524. DOI: https://doi.org/10.1007/</p><p>s12311-018-0938-1, PMID: 29637507</p><p>Çavdar S, Özgür M, Kuvvet Y, Bay H, Aydogmus E. 2018b. Cortical, subcortical and brain stem connections of</p><p>the cerebellum via the superior and middle cerebellar peduncle in the rat. Journal of Integrative Neuroscience</p><p>17:609–618. DOI: https://doi.org/10.3233/JIN-180090, PMID: 30056432</p><p>Cechetto DF, Saper CB. 1987. Evidence for a viscerotopic sensory representation in the cortex and thalamus in</p><p>the rat. The Journal of Comparative Neurology 262:27–45. DOI: https://doi.org/10.1002/cne.902620104,</p><p>PMID: 2442207</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1002/cne.23024</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22173709</p><p>https://doi.org/10.1016/j.celrep.2014.11.027</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25497093</p><p>https://doi.org/10.1002/cne.903350210</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8227518</p><p>https://doi.org/10.1113/JP270053</p><p>https://doi.org/10.1113/JP270053</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25820491</p><p>https://doi.org/10.1016/B978-0-444-63274-6.00015-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24746054</p><p>https://doi.org/10.1016/j.jneumeth.2014.12.013</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25555356</p><p>https://doi.org/10.1113/JP276900</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30285278</p><p>https://doi.org/10.1016/0034-5687(81)90051-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7280390</p><p>https://doi.org/10.1007/s12311-014-0592-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25132500</p><p>https://doi.org/10.3389/fneur.2016.00078</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27242661</p><p>https://doi.org/10.1113/jphysiol.2003.057885</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15004208</p><p>https://doi.org/10.1007/978-3-540-79090-7</p><p>https://doi.org/10.1378/chest.14-1481</p><p>https://doi.org/10.1016/j.tins.2017.03.001</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28431742</p><p>https://doi.org/10.1523/JNEUROSCI.4969-11.2012</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22723707</p><p>https://doi.org/10.1523/JNEUROSCI.4395-11.2012</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22302807</p><p>https://doi.org/10.1016/s1566-0702(01)00338-1</p><p>https://doi.org/10.1016/s1566-0702(01)00338-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11775703</p><p>https://doi.org/10.1016/0166-4328(93)90088-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8136048</p><p>https://doi.org/10.2174/1874196701104010035</p><p>https://doi.org/10.1007/s12311-018-0938-1</p><p>https://doi.org/10.1007/s12311-018-0938-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29637507</p><p>https://doi.org/10.3233/JIN-180090</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30056432</p><p>https://doi.org/10.1002/cne.902620104</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2442207</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 41 of 67</p><p>Cerritelli S, Hirschberg S, Hill R, Balthasar N, Pickering AE. 2016. Activation of brainstem pro- opiomelanocortin</p><p>neurons produces opioidergic analgesia, bradycardia and bradypnoea. PLOS ONE 11:e0153187. DOI: https://</p><p>doi.org/10.1371/journal.pone.0153187, PMID: 27077912</p><p>Chamberlin NL, Eikermann M, Fassbender P, White DP, Malhotra A. 2007. Genioglossus premotoneurons and</p><p>the negative pressure reflex in rats. The Journal of Physiology 579:515–526. DOI: https://doi.org/10.1113/</p><p>jphysiol.2006.121889, PMID: 17185342</p><p>Chandler DJ, Jensen P, McCall JG, Pickering AE, Schwarz LA, Totah NK. 2019. Redefining noradrenergic</p><p>neuromodulation of behavior: impacts of a modular locus coeruleus architecture. The Journal of Neuroscience</p><p>39:8239–8249. DOI: https://doi.org/10.1523/JNEUROSCI.1164-19.2019, PMID: 31619493</p><p>Chang Z, Ballou E, Jiao W, McKenna KE, Morrison SF, McCrimmon DR. 2013. Systemic leptin produces a</p><p>long- lasting increase in respiratory motor output in rats. Frontiers in Physiology 4:16. DOI: https://doi.org/10.</p><p>3389/fphys.2013.00016, PMID: 23408476</p><p>Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. 2015. Vagal sensory neuron subtypes that</p><p>differentially control breathing. Cell 161:622–633. DOI: https://doi.org/10.1016/j.cell.2015.03.022, PMID:</p><p>25892222</p><p>Chen ML, Witmans MB, Tablizo MA, Jubran RF, Turkel SB, Tavaré CJ, Keens TG. 2005. Disordered respiratory</p><p>control in children with partial cerebellar resections. Pediatric Pulmonology 40:88–91. DOI: https://doi.org/10.</p><p>1002/ppul.20225, PMID: 15880401</p><p>Chen Z, Lin MT, Zhan C, Zhong NS, Mu D, Lai KF, Liu MJ. 2022. A descending pathway emanating from the</p><p>periaqueductal gray mediates the development of cough- like hypersensitivity. IScience 25:103641.</p><p>DOI:</p><p>https://doi.org/10.1016/j.isci.2021.103641, PMID: 35028531</p><p>Chiang MC, Bowen A, Schier LA, Tupone D, Uddin O, Heinricher MM. 2019. Parabrachial complex: A hub for</p><p>pain and aversion. The Journal of Neuroscience 39:8225–8230. DOI: https://doi.org/10.1523/JNEUROSCI.</p><p>1162-19.2019, PMID: 31619491</p><p>Cinelli E, Robertson B, Mutolo D, Grillner S, Pantaleo T, Bongianni F. 2013. Neuronal mechanisms of respiratory</p><p>pattern generation are evolutionary conserved. The Journal of Neuroscience 33:9104–9112. DOI: https://doi.</p><p>org/10.1523/JNEUROSCI.0299-13.2013, PMID: 23699521</p><p>Cinelli E, Iovino L, Bongianni F, Pantaleo T, Mutolo D. 2020. Essential role of the cvrg in the generation of both</p><p>the expiratory and inspiratory components of the cough reflex. Physiological Research 69:S19–S27. DOI:</p><p>https://doi.org/10.33549/physiolres.934396, PMID: 32228008</p><p>Ciriello J, Caverson MM. 2014. Hypothalamic orexin- A (hypocretin- 1) neuronal projections to the vestibular</p><p>complex and cerebellum in the rat. Brain Research 1579:20–34. DOI: https://doi.org/10.1016/j.brainres.2014.</p><p>07.008, PMID: 25017945</p><p>Claps A, Torrealba F. 1988. The carotid body connections: a WGA- HRP study in the cat. Brain Research 455:123–</p><p>133. DOI: https://doi.org/10.1016/0006-8993(88)90121-7, PMID: 2458164</p><p>Coates EL, Li A, Nattie EE. 1993. Widespread sites of brain stem ventilatory chemoreceptors. Journal of Applied</p><p>Physiology 75:5–14. DOI: https://doi.org/10.1152/jappl.1993.75.1.5, PMID: 8376301</p><p>Coesmans M, Weber JT, De Zeeuw CI, Hansel C. 2004. Bidirectional parallel fiber plasticity in the cerebellum</p><p>under climbing fiber control. Neuron 44:691–700. DOI: https://doi.org/10.1016/j.neuron.2004.10.031, PMID:</p><p>15541316</p><p>Cohen MI, Wang SC. 1959. Respiratory neuronal activity in pons of cat. Journal of Neurophysiology 22:33–50.</p><p>DOI: https://doi.org/10.1152/jn.1959.22.1.33, PMID: 13621254</p><p>Colebatch JG, Adams L, Murphy K, Martin AJ, Lammertsma AA, Tochon- Danguy HJ, Clark JC, Friston KJ, Guz A.</p><p>1991. Regional cerebral blood flow during volitional breathing in man. The Journal of Physiology 443:91–103.</p><p>DOI: https://doi.org/10.1113/jphysiol.1991.sp018824, PMID: 1822545</p><p>Coleridge JC, Coleridge HM. 1984. Afferent vagal C fibre innervation of the lungs and airways and its functional</p><p>significance. Reviews of Physiology, Biochemistry and Pharmacology 99:1–110. DOI: https://doi.org/10.1007/</p><p>BFb0027715, PMID: 6695127</p><p>Coryell MW, Ziemann AE, Westmoreland PJ, Haenfler JM, Kurjakovic Z, Zha X, Price M, Schnizler MK,</p><p>Wemmie JA. 2007. Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit.</p><p>Biological Psychiatry 62:1140–1148. DOI: https://doi.org/10.1016/j.biopsych.2007.05.008, PMID: 17662962</p><p>Critchley HD, Nicotra A, Chiesa PA, Nagai Y, Gray MA, Minati L, Bernardi L. 2015. Slow breathing and hypoxic</p><p>challenge: cardiorespiratory consequences and their central neural substrates. PLOS ONE 10:e0127082. DOI:</p><p>https://doi.org/10.1371/journal.pone.0127082, PMID: 25973923</p><p>Cruz- Sánchez FF, Lucena J, Ascaso C, Tolosa E, Quintò L, Rossi ML. 1997. Cerebellar cortex delayed maturation</p><p>in sudden infant death syndrome. Journal of Neuropathology and Experimental Neurology 56:340–346. DOI:</p><p>https://doi.org/10.1097/00005072-199704000-00002, PMID: 9100664</p><p>Cui Y, Kam K, Sherman D, Janczewski WA, Zheng Y, Feldman JL. 2016. Defining prebötzinger complex rhythm-</p><p>and pattern- generating neural microcircuits in vivo. Neuron 91:602–614. DOI: https://doi.org/10.1016/j.neuron.</p><p>2016.07.003, PMID: 27497222</p><p>Cummins EP, Strowitzki MJ, Taylor CT. 2020. Mechanisms and consequences of oxygen and carbon dioxide</p><p>sensing in mammals. Physiological Reviews 100:463–488. DOI: https://doi.org/10.1152/physrev.00003.2019,</p><p>PMID: 31539306</p><p>Cunningham ET, Sawchenko PE. 1988. Anatomical specificity of noradrenergic inputs to the paraventricular and</p><p>supraoptic nuclei of the rat hypothalamus. The Journal of Comparative Neurology 274:60–76. DOI: https://doi.</p><p>org/10.1002/cne.902740107, PMID: 2458397</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1371/journal.pone.0153187</p><p>https://doi.org/10.1371/journal.pone.0153187</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27077912</p><p>https://doi.org/10.1113/jphysiol.2006.121889</p><p>https://doi.org/10.1113/jphysiol.2006.121889</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17185342</p><p>https://doi.org/10.1523/JNEUROSCI.1164-19.2019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31619493</p><p>https://doi.org/10.3389/fphys.2013.00016</p><p>https://doi.org/10.3389/fphys.2013.00016</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23408476</p><p>https://doi.org/10.1016/j.cell.2015.03.022</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25892222</p><p>https://doi.org/10.1002/ppul.20225</p><p>https://doi.org/10.1002/ppul.20225</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15880401</p><p>https://doi.org/10.1016/j.isci.2021.103641</p><p>http://www.ncbi.nlm.nih.gov/pubmed/35028531</p><p>https://doi.org/10.1523/JNEUROSCI.1162-19.2019</p><p>https://doi.org/10.1523/JNEUROSCI.1162-19.2019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31619491</p><p>https://doi.org/10.1523/JNEUROSCI.0299-13.2013</p><p>https://doi.org/10.1523/JNEUROSCI.0299-13.2013</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23699521</p><p>https://doi.org/10.33549/physiolres.934396</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32228008</p><p>https://doi.org/10.1016/j.brainres.2014.07.008</p><p>https://doi.org/10.1016/j.brainres.2014.07.008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25017945</p><p>https://doi.org/10.1016/0006-8993(88)90121-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2458164</p><p>https://doi.org/10.1152/jappl.1993.75.1.5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8376301</p><p>https://doi.org/10.1016/j.neuron.2004.10.031</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15541316</p><p>https://doi.org/10.1152/jn.1959.22.1.33</p><p>http://www.ncbi.nlm.nih.gov/pubmed/13621254</p><p>https://doi.org/10.1113/jphysiol.1991.sp018824</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1822545</p><p>https://doi.org/10.1007/BFb0027715</p><p>https://doi.org/10.1007/BFb0027715</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6695127</p><p>https://doi.org/10.1016/j.biopsych.2007.05.008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17662962</p><p>https://doi.org/10.1371/journal.pone.0127082</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25973923</p><p>https://doi.org/10.1097/00005072-199704000-00002</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9100664</p><p>https://doi.org/10.1016/j.neuron.2016.07.003</p><p>https://doi.org/10.1016/j.neuron.2016.07.003</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27497222</p><p>https://doi.org/10.1152/physrev.00003.2019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31539306</p><p>https://doi.org/10.1002/cne.902740107</p><p>https://doi.org/10.1002/cne.902740107</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2458397</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 42 of 67</p><p>D’Adamo MC, Gallenmüller C, Servettini I, Hartl E, Tucker SJ, Arning L, Biskup S, Grottesi A, Guglielmi L,</p><p>Imbrici P, Bernasconi P, Di Giovanni G, Franciolini F, Catacuzzeno L, Pessia M, Klopstock T. 2014. Novel</p><p>phenotype associated with a mutation in the KCNA1(kv1.1) gene. Frontiers in Physiology 5:525. DOI: https://</p><p>doi.org/10.3389/fphys.2014.00525, PMID: 25642194</p><p>D’Adamo MC, Liantonio A, Rolland J- F, Pessia M, Imbrici P. 2020. Kv1.1 channelopathies: Pathophysiological</p><p>mechanisms and therapeutic approaches. International Journal of Molecular Sciences 21:2935. DOI: https://</p><p>doi.org/10.3390/ijms21082935, PMID: 32331416</p><p>Damasceno RS, Takakura AC, Moreira TS. 2014. Regulation of the chemosensory control of breathing by</p><p>Kölliker- Fuse neurons. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology</p><p>307:R57–R67. DOI: https://doi.org/10.1152/ajpregu.00024.2014, PMID: 24760995</p><p>Dautan D, Hacioğlu Bay H, Bolam JP, Gerdjikov TV, Mena- Segovia J. 2016. Extrinsic sources of cholinergic</p><p>innervation of the striatal complex: A whole- brain mapping analysis. Frontiers in Neuroanatomy 10:1. DOI:</p><p>https://doi.org/10.3389/fnana.2016.00001, PMID: 26834571</p><p>Davenport PW, Sant’Ambrogio FB, Sant’Ambrogio G. 1981. Adaptation of tracheal stretch receptors.</p><p>Respiration Physiology 44:339–349. DOI: https://doi.org/10.1016/0034-5687(81)90028-1, PMID: 7268222</p><p>Davies RO, Kubin L, Pack AI. 1987. Pulmonary stretch</p><p>receptor relay neurones of the cat: location and</p><p>contralateral medullary projections. The Journal of Physiology 383:571–585. DOI: https://doi.org/10.1113/</p><p>jphysiol.1987.sp016429, PMID: 3656136</p><p>de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT,</p><p>Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG. 1998. The hypocretins:</p><p>hypothalamus- specific peptides with neuroexcitatory activity. PNAS 95:322–327. DOI: https://doi.org/10.1073/</p><p>pnas.95.1.322, PMID: 9419374</p><p>de Sousa Buck H, Caous CA, Lindsey CJ. 2001. Projections of the paratrigeminal nucleus to the ambiguus,</p><p>rostroventrolateral and lateral reticular nuclei, and the solitary tract. Auton Neurosci 87:187–200. DOI: https://</p><p>doi.org/10.1016/S1566-0702(00)00259-9</p><p>De Troyer A, Estenne M. 1984. Coordination between rib cage muscles and diaphragm during quiet breathing in</p><p>humans. Journal of Applied Physiology 57:899–906. DOI: https://doi.org/10.1152/jappl.1984.57.3.899, PMID:</p><p>6238017</p><p>De Troyer A, Legrand A, Gevenois PA, Wilson TA. 1998. Mechanical advantage of the human parasternal</p><p>intercostal and triangularis sterni muscles. The Journal of Physiology 513 ( Pt 3):915–925. DOI: https://doi.org/</p><p>10.1111/j.1469-7793.1998.915ba.x, PMID: 9824728</p><p>De Troyer A, Kirkwood PA, Wilson TA. 2005. Respiratory action of the intercostal muscles. Physiological Reviews</p><p>85:717–756. DOI: https://doi.org/10.1152/physrev.00007.2004, PMID: 15788709</p><p>de Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J. 1989. Ultrastructural study of the gabaergic, cerebellar, and</p><p>mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with</p><p>immunocytochemistry. The Journal of Comparative Neurology 284:12–35. DOI: https://doi.org/10.1002/cne.</p><p>902840103, PMID: 2474000</p><p>De Zeeuw CI, Ruigrok TJH. 1994. Olivary projecting neurons in the nucleus of darkschewitsch in the cat receive</p><p>excitatory monosynaptic input from the cerebellar nuclei. Brain Research 653:345–350. DOI: https://doi.org/10.</p><p>1016/0006-8993(94)90411-1, PMID: 7526963</p><p>De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. 2011. Spatiotemporal firing</p><p>patterns in the cerebellum. Nature Reviews. Neuroscience 12:327–344. DOI: https://doi.org/10.1038/nrn3011,</p><p>PMID: 21544091</p><p>Dean JB, Putnam RW. 2010. The caudal solitary complex is a site of central CO (2) chemoreception and</p><p>integration of multiple systems that regulate expired CO (2). Respiratory Physiology & Neurobiology 173:274–</p><p>287. DOI: https://doi.org/10.1016/j.resp.2010.07.002, PMID: 20670695</p><p>de Britto AA, Moraes DJA. 2017. Non- chemosensitive parafacial neurons simultaneously regulate active</p><p>expiration and airway patency under hypercapnia in rats. The Journal of Physiology 595:2043–2064. DOI:</p><p>https://doi.org/10.1113/JP273335, PMID: 28004411</p><p>Del Negro CA, Funk GD, Feldman JL. 2018. Breathing matters. Nature Reviews. Neuroscience 19:351–367. DOI:</p><p>https://doi.org/10.1038/s41583-018-0003-6, PMID: 29740175</p><p>Deng BS, Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T. 2007. Contribution of orexin in hypercapnic</p><p>chemoreflex: Evidence from genetic and pharmacological disruption and supplementation studies in mice.</p><p>Journal of Applied Physiology 103:1772–1779. DOI: https://doi.org/10.1152/japplphysiol.00075.2007, PMID:</p><p>17717124</p><p>Depuy SD, Kanbar R, Coates MB, Stornetta RL, Guyenet PG. 2011. Control of breathing by raphe obscurus</p><p>serotonergic neurons in mice. The Journal of Neuroscience 31:1981–1990. DOI: https://doi.org/10.1523/</p><p>JNEUROSCI.4639-10.2011, PMID: 21307236</p><p>Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D. 2010. Respiratory modulation of premotor cardiac vagal</p><p>neurons in the brainstem. Respiratory Physiology & Neurobiology 174:102–110. DOI: https://doi.org/10.1016/j.</p><p>resp.2010.05.005, PMID: 20452467</p><p>De Zeeuw CI, Canto CB. 2022. Interpreting thoughts during sleep. Science 377:919–920. DOI: https://doi.org/</p><p>10.1126/science.add8592, PMID: 36007053</p><p>Dhaibar H, Gautier NM, Chernyshev OY, Dominic P, Glasscock E. 2019. Cardiorespiratory profiling reveals</p><p>primary breathing dysfunction in Kcna1- null mice: implications for sudden unexpected death in epilepsy.</p><p>Neurobiology of Disease 127:502–511. DOI: https://doi.org/10.1016/j.nbd.2019.04.006, PMID: 30974168</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.3389/fphys.2014.00525</p><p>https://doi.org/10.3389/fphys.2014.00525</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25642194</p><p>https://doi.org/10.3390/ijms21082935</p><p>https://doi.org/10.3390/ijms21082935</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32331416</p><p>https://doi.org/10.1152/ajpregu.00024.2014</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24760995</p><p>https://doi.org/10.3389/fnana.2016.00001</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26834571</p><p>https://doi.org/10.1016/0034-5687(81)90028-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7268222</p><p>https://doi.org/10.1113/jphysiol.1987.sp016429</p><p>https://doi.org/10.1113/jphysiol.1987.sp016429</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3656136</p><p>https://doi.org/10.1073/pnas.95.1.322</p><p>https://doi.org/10.1073/pnas.95.1.322</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9419374</p><p>https://doi.org/10.1016/S1566-0702(00)00259-9</p><p>https://doi.org/10.1016/S1566-0702(00)00259-9</p><p>https://doi.org/10.1152/jappl.1984.57.3.899</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6238017</p><p>https://doi.org/10.1111/j.1469-7793.1998.915ba.x</p><p>https://doi.org/10.1111/j.1469-7793.1998.915ba.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9824728</p><p>https://doi.org/10.1152/physrev.00007.2004</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15788709</p><p>https://doi.org/10.1002/cne.902840103</p><p>https://doi.org/10.1002/cne.902840103</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2474000</p><p>https://doi.org/10.1016/0006-8993(94)90411-1</p><p>https://doi.org/10.1016/0006-8993(94)90411-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7526963</p><p>https://doi.org/10.1038/nrn3011</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21544091</p><p>https://doi.org/10.1016/j.resp.2010.07.002</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20670695</p><p>https://doi.org/10.1113/JP273335</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28004411</p><p>https://doi.org/10.1038/s41583-018-0003-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29740175</p><p>https://doi.org/10.1152/japplphysiol.00075.2007</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17717124</p><p>https://doi.org/10.1523/JNEUROSCI.4639-10.2011</p><p>https://doi.org/10.1523/JNEUROSCI.4639-10.2011</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21307236</p><p>https://doi.org/10.1016/j.resp.2010.05.005</p><p>https://doi.org/10.1016/j.resp.2010.05.005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20452467</p><p>https://doi.org/10.1126/science.add8592</p><p>https://doi.org/10.1126/science.add8592</p><p>http://www.ncbi.nlm.nih.gov/pubmed/36007053</p><p>https://doi.org/10.1016/j.nbd.2019.04.006</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30974168</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 43 of 67</p><p>Dhingra RR, Dick TE, Furuya WI, Galán RF, Dutschmann M. 2020. Volumetric mapping of the functional</p><p>neuroanatomy of the respiratory network in the perfused brainstem preparation of rats. The Journal of</p><p>Physiology 598:2061–2079. DOI: https://doi.org/10.1113/JP279605, PMID: 32100293</p><p>Dick TE, Bellingham MC, Richter DW. 1994. Pontine respiratory neurons in anesthetized cats. Brain Research</p><p>636:259–269. DOI: https://doi.org/10.1016/0006-8993(94)91025-1, PMID: 8012810</p><p>Dietrichs E. 1984. Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science 223:591–593.</p><p>DOI: https://doi.org/10.1126/science.6198719, PMID: 6198719</p><p>Dietrichs E. 1988. Cerebellar cortical and nuclear afferents from the feline locus coeruleus complex.</p><p>Neuroscience 27:77–91. DOI: https://doi.org/10.1016/0306-4522(88)90220-5, PMID: 2462193</p><p>Dietrichs E, Haines DE, Røste GK, Røste LS. 1994. Hypothalamocerebellar and cerebellohypothalamic</p><p>projections--circuits for regulating nonsomatic cerebellar activity? Histology and Histopathology 9:603–614</p><p>PMID: 7981506.</p><p>Di Mauro M, Li Volsi G, Licata F. 2013. Noradrenergic control of neuronal firing in cerebellar nuclei: Modulation</p><p>of GABA responses. Cerebellum 12:350–361. DOI: https://doi.org/10.1007/s12311-012-0422-2,</p><p>PMID:</p><p>23096094</p><p>Ding YQ, Kaneko T, Nomura S, Mizuno N. 1996. Immunohistochemical localization of mu- opioid receptors in the</p><p>central nervous system of the rat. The Journal of Comparative Neurology 367:375–402. DOI: https://doi.org/</p><p>10.1002/(SICI)1096-9861(19960408)367:3<375::AID-CNE5>3.0.CO;2-2, PMID: 8698899</p><p>Do J, Chang Z, Sekerková G, McCrimmon DR, Martina M. 2020. A leptin- mediated neural mechanism linking</p><p>breathing to metabolism. Cell Reports 33:108358. DOI: https://doi.org/10.1016/j.celrep.2020.108358, PMID:</p><p>33176139</p><p>Dobbins EG, Feldman JL. 1994. Brainstem network controlling descending drive to phrenic motoneurons in rat.</p><p>The Journal of Comparative Neurology 347:64–86. DOI: https://doi.org/10.1002/cne.903470106, PMID:</p><p>7798382</p><p>Docu Axelerad A, Stroe AZ, Arghir OC, Docu Axelerad D, Gogu AE. 2021. Respiratory dysfunctions in</p><p>Parkinson’s disease patients. Brain Sciences 11:595. DOI: https://doi.org/10.3390/brainsci11050595, PMID:</p><p>34064360</p><p>Dong HW, Petrovich GD, Swanson LW. 2001a. Topography of projections from amygdala to bed nuclei of the</p><p>stria terminalis. Brain Research. Brain Research Reviews 38:192–246. DOI: https://doi.org/10.1016/s0165-0173(</p><p>01)00079-0, PMID: 11750933</p><p>Dong HW, Petrovich GD, Watts AG, Swanson LW. 2001b. Basic organization of projections from the oval and</p><p>fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. The Journal of Comparative Neurology</p><p>436:430–455. DOI: https://doi.org/10.1002/cne.1079, PMID: 11447588</p><p>Doty RL, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD. 1978. Intranasal trigeminal stimulation from</p><p>odorous volatiles: psychometric responses from anosmic and normal humans. Physiology & Behavior 20:175–</p><p>185. DOI: https://doi.org/10.1016/0031-9384(78)90070-7, PMID: 662939</p><p>Driessen AK, Farrell MJ, Mazzone SB, McGovern AE. 2015. The role of the paratrigeminal nucleus in vagal</p><p>afferent evoked respiratory reflexes: A neuroanatomical and functional study in guinea pigs. Frontiers in</p><p>Physiology 6:378. DOI: https://doi.org/10.3389/fphys.2015.00378, PMID: 26733874</p><p>Driessen AK, Farrell MJ, Dutschmann M, Stanic D, McGovern AE, Mazzone SB. 2018. Reflex regulation of</p><p>breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Structure & Function 223:4005–4022.</p><p>DOI: https://doi.org/10.1007/s00429-018-1732-z, PMID: 30116890</p><p>Driessen AK. 2019. Vagal afferent processing by the paratrigeminal nucleus. Frontiers in Physiology 10:1110.</p><p>DOI: https://doi.org/10.3389/fphys.2019.01110, PMID: 31555145</p><p>Duncker H. 2001. The emergence of macroscopic complexity an outline of the history of the respiratory</p><p>apparatus of vertebrates from diffusion to language production. Zoology 103:240–259.</p><p>Dutschmann M, Herbert H. 2006. The Kölliker- fuse nucleus gates the postinspiratory phase of the respiratory</p><p>cycle to control inspiratory off- switch and upper airway resistance in rat. The European Journal of Neuroscience</p><p>24:1071–1084. DOI: https://doi.org/10.1111/j.1460-9568.2006.04981.x, PMID: 16930433</p><p>Dutschmann M, Jones SE, Subramanian HH, Stanic D, Bautista TG. 2014. The physiological significance of</p><p>postinspiration in respiratory control. Progress in Brain Research 212:113–130. DOI: https://doi.org/10.1016/</p><p>B978-0-444-63488-7.00007-0, PMID: 25194196</p><p>Dutschmann M, Bautista TG, Trevizan- Baú P, Dhingra RR, Furuya WI. 2021. The pontine Kölliker- fuse nucleus</p><p>gates facial, hypoglossal, and vagal upper airway related motor activity. Respiratory Physiology & Neurobiology</p><p>284:103563. DOI: https://doi.org/10.1016/j.resp.2020.103563, PMID: 33053424</p><p>Ebert D, Hefter H, Dohle C, Freund HJ. 1995. Ataxic breathing during alternating forearm movements of various</p><p>frequencies in cerebellar patients. Neuroscience Letters 193:145–148. DOI: https://doi.org/10.1016/0304-</p><p>3940(95)11674-l, PMID: 7478169</p><p>Ebert D, Rassler B, Hefter H. 2000. Coordination between breathing and forearm movements during sinusoidal</p><p>tracking. European Journal of Applied Physiology 81:288–296. DOI: https://doi.org/10.1007/s004210050045,</p><p>PMID: 10664087</p><p>Elam M, Yao T, Thorén P, Svensson TH. 1981. Hypercapnia and hypoxia: Chemoreceptor- mediated control of</p><p>locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Research 222:373–381. DOI: https://doi.</p><p>org/10.1016/0006-8993(81)91040-4, PMID: 6793212</p><p>Ellenberger HH, Feldman JL. 1988. Monosynaptic transmission of respiratory drive to phrenic motoneurons from</p><p>brainstem bulbospinal neurons in rats. The Journal of Comparative Neurology 269:47–57. DOI: https://doi.org/</p><p>10.1002/cne.902690104, PMID: 3361003</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1113/JP279605</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32100293</p><p>https://doi.org/10.1016/0006-8993(94)91025-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8012810</p><p>https://doi.org/10.1126/science.6198719</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6198719</p><p>https://doi.org/10.1016/0306-4522(88)90220-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2462193</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7981506</p><p>https://doi.org/10.1007/s12311-012-0422-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23096094</p><p>https://doi.org/10.1002/(SICI)1096-9861(19960408)367:3<375::AID-CNE5>3.0.CO;2-2</p><p>https://doi.org/10.1002/(SICI)1096-9861(19960408)367:3<375::AID-CNE5>3.0.CO;2-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8698899</p><p>https://doi.org/10.1016/j.celrep.2020.108358</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33176139</p><p>https://doi.org/10.1002/cne.903470106</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7798382</p><p>https://doi.org/10.3390/brainsci11050595</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34064360</p><p>https://doi.org/10.1016/s0165-0173(01)00079-0</p><p>https://doi.org/10.1016/s0165-0173(01)00079-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11750933</p><p>https://doi.org/10.1002/cne.1079</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11447588</p><p>https://doi.org/10.1016/0031-9384(78)90070-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/662939</p><p>https://doi.org/10.3389/fphys.2015.00378</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26733874</p><p>https://doi.org/10.1007/s00429-018-1732-z</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30116890</p><p>https://doi.org/10.3389/fphys.2019.01110</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31555145</p><p>https://doi.org/10.1111/j.1460-9568.2006.04981.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16930433</p><p>https://doi.org/10.1016/B978-0-444-63488-7.00007-0</p><p>https://doi.org/10.1016/B978-0-444-63488-7.00007-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25194196</p><p>https://doi.org/10.1016/j.resp.2020.103563</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33053424</p><p>https://doi.org/10.1016/0304-3940(95)11674-l</p><p>https://doi.org/10.1016/0304-3940(95)11674-l</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7478169</p><p>https://doi.org/10.1007/s004210050045</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10664087</p><p>https://doi.org/10.1016/0006-8993(81)91040-4</p><p>https://doi.org/10.1016/0006-8993(81)91040-4</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6793212</p><p>https://doi.org/10.1002/cne.902690104</p><p>https://doi.org/10.1002/cne.902690104</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3361003</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 44 of 67</p><p>Ellenberger HH, Feldman JL, Goshgarian HG. 1990a. Ventral respiratory group projections to phrenic</p><p>motoneurons: electron microscopic evidence for monosynaptic connections. The Journal of Comparative</p><p>Neurology 302:707–714. DOI: https://doi.org/10.1002/cne.903020403, PMID: 1707065</p><p>Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N. 1990b. Brainstem projections to the</p><p>phrenic nucleus: an anterograde and retrograde HRP study in the rabbit. Brain Research Bulletin 24:163–174.</p><p>DOI: https://doi.org/10.1016/0361-9230(90)90201-a, PMID: 1691045</p><p>Ellenberger HH, Feldman JL. 1990. Brainstem connections of the rostral ventral respiratory group of the rat.</p><p>Brain Research 513:35–42. DOI: https://doi.org/10.1016/0006-8993(90)91086-v, PMID: 2350683</p><p>Elstad M, O’Callaghan EL, Smith AJ, Ben- Tal A, Ramchandra R. 2018. Cardiorespiratory interactions in humans</p><p>and animals: rhythms for life. American Journal of Physiology. Heart and Circulatory Physiology 315:H6–H17.</p><p>DOI: https://doi.org/10.1152/ajpheart.00701.2017,</p><p>PMID: 29522373</p><p>Esposito A, Demeurisse G, Alberti B, Fabbro F. 1999. Complete mutism after midbrain periaqueductal gray</p><p>lesion. Neuroreport 10:681–685. DOI: https://doi.org/10.1097/00001756-199903170-00004, PMID: 10208530</p><p>Ezure K, Tanaka I. 1996. Pump neurons of the nucleus of the solitary tract project widely to the medulla.</p><p>Neuroscience Letters 215:123–126. DOI: https://doi.org/10.1016/0304-3940(96)12968-2, PMID: 8888011</p><p>Ezure K, Tanaka I. 2000. Identification of deflation- sensitive inspiratory neurons in the dorsal respiratory group of</p><p>the rat. Brain Research 883:22–30. DOI: https://doi.org/10.1016/s0006-8993(00)02871-7, PMID: 11063984</p><p>Ezure K, Tanaka I, Saito Y. 2003. Brainstem and spinal projections of augmenting expiratory neurons in the rat.</p><p>Neuroscience Research 45:41–51. DOI: https://doi.org/10.1016/s0168-0102(02)00197-9, PMID: 12507723</p><p>Ezure K. 2004. Respiration- related afferents to parabrachial pontine regions. Respiratory Physiology &</p><p>Neurobiology 143:167–175. DOI: https://doi.org/10.1016/j.resp.2004.03.017, PMID: 15519553</p><p>Ezure K, Tanaka I. 2006. Distribution and medullary projection of respiratory neurons in the dorsolateral pons of</p><p>the rat. Neuroscience 141:1011–1023. DOI: https://doi.org/10.1016/j.neuroscience.2006.04.020, PMID:</p><p>16725272</p><p>Farber JP. 1987. Expiratory effects of cerebellar stimulation in developing opossums. The American Journal of</p><p>Physiology 252:R1158–R1164. DOI: https://doi.org/10.1152/ajpregu.1987.252.6.R1158, PMID: 3296790</p><p>Farmer DGS, Dutschmann M, Paton JFR, Pickering AE, McAllen RM. 2016. Brainstem sources of cardiac vagal</p><p>tone and respiratory sinus arrhythmia. The Journal of Physiology 594:7249–7265. DOI: https://doi.org/10.1113/</p><p>JP273164, PMID: 27654879</p><p>Farney RJ, Walker JM, Cloward TV, Rhondeau S. 2003. Sleep- Disordered breathing associated with long- term</p><p>opioid therapy. Chest 123:632–639. DOI: https://doi.org/10.1378/chest.123.2.632, PMID: 12576394</p><p>Farrell MJ, Bautista TG, Liang E, Azzollini D, Egan GF, Mazzone SB. 2020. Evidence for multiple bulbar and</p><p>higher brain circuits processing sensory inputs from the respiratory system in humans. The Journal of</p><p>Physiology 598:5771–5787. DOI: https://doi.org/10.1113/JP280220, PMID: 33029786</p><p>Faull OK, Subramanian HH, Ezra M, Pattinson KTS. 2019. The midbrain periaqueductal gray as an integrative and</p><p>interoceptive neural structure for breathing. Neuroscience and Biobehavioral Reviews 98:135–144. DOI:</p><p>https://doi.org/10.1016/j.neubiorev.2018.12.020, PMID: 30611797</p><p>Fedorko L, Merrill EG, Lipski J. 1983. Two descending medullary inspiratory pathways to phrenic motoneurones.</p><p>Neuroscience Letters 43:285–291. DOI: https://doi.org/10.1016/0304-3940(83)90202-1, PMID: 6672694</p><p>Fedorko L, Merrill EG. 1984. Axonal projections from the rostral expiratory neurones of the Bötzinger complex</p><p>to medulla and spinal cord in the cat. The Journal of Physiology 350:487–496. DOI: https://doi.org/10.1113/</p><p>jphysiol.1984.sp015214, PMID: 6747857</p><p>Fink AM, Burke LA, Sharma K. 2021. Lesioning of the pedunculopontine nucleus reduces rapid eye movement</p><p>sleep, but does not alter cardiorespiratory activities during sleep, under hypoxic conditions in rats. Respiratory</p><p>Physiology & Neurobiology 288:103653. DOI: https://doi.org/10.1016/j.resp.2021.103653, PMID: 33716095</p><p>Finley JCW, Katz DM. 1992. The central organization of carotid body afferent projections to the brainstem of the</p><p>rat. Brain Research 572:108–116. DOI: https://doi.org/10.1016/0006-8993(92)90458-l, PMID: 1611506</p><p>Flor KC, Barnett WH, Karlen- Amarante M, Molkov YI, Zoccal DB. 2020. Inhibitory control of active expiration by</p><p>the Bötzinger complex in rats. The Journal of Physiology 598:4969–4994. DOI: https://doi.org/10.1113/</p><p>JP280243, PMID: 32621515</p><p>Fontanini A, Spano P, Bower JM. 2003. Ketamine- xylazine- induced slow (< 1.5 hz) oscillations in the rat piriform</p><p>(olfactory) cortex are functionally correlated with respiration. The Journal of Neuroscience 23:7993–8001. DOI:</p><p>https://doi.org/10.1523/JNEUROSCI.23-22-07993.2003, PMID: 12954860</p><p>Framnes SN, Arble DM. 2018. The bidirectional relationship between obstructive sleep apnea and metabolic</p><p>disease. Frontiers in Endocrinology 9:440. DOI: https://doi.org/10.3389/fendo.2018.00440, PMID: 30127766</p><p>Fries P. 2015. Rhythms for cognition: Communication through coherence. Neuron 88:220–235. DOI: https://doi.</p><p>org/10.1016/j.neuron.2015.09.034, PMID: 26447583</p><p>Frontera JL, Baba Aissa H, Sala RW, Mailhes- Hamon C, Georgescu IA, Léna C, Popa D. 2020. Bidirectional</p><p>control of fear memories by cerebellar neurons projecting to the ventrolateral periaqueductal grey. Nature</p><p>Communications 11:5207. DOI: https://doi.org/10.1038/s41467-020-18953-0, PMID: 33060630</p><p>Fu Y, Tvrdik P, Makki N, Paxinos G, Watson C. 2011. Precerebellar cell groups in the hindbrain of the mouse</p><p>defined by retrograde tracing and correlated with cumulative wnt1- cre genetic labeling. Cerebellum 10:570–</p><p>584. DOI: https://doi.org/10.1007/s12311-011-0266-1, PMID: 21479970</p><p>Fu C, Xue J, Wang R, Chen J, Ma L, Liu Y, Wang X, Guo F, Zhang Y, Zhang X, Wang S. 2017. Chemosensitive</p><p>phox2b- expressing neurons are crucial for hypercapnic ventilatory response in the nucleus tractus solitarius.</p><p>The Journal of Physiology 595:4973–4989. DOI: https://doi.org/10.1113/JP274437, PMID: 28488367</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1002/cne.903020403</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1707065</p><p>https://doi.org/10.1016/0361-9230(90)90201-a</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1691045</p><p>https://doi.org/10.1016/0006-8993(90)91086-v</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2350683</p><p>https://doi.org/10.1152/ajpheart.00701.2017</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29522373</p><p>https://doi.org/10.1097/00001756-199903170-00004</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10208530</p><p>https://doi.org/10.1016/0304-3940(96)12968-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8888011</p><p>https://doi.org/10.1016/s0006-8993(00)02871-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11063984</p><p>https://doi.org/10.1016/s0168-0102(02)00197-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12507723</p><p>https://doi.org/10.1016/j.resp.2004.03.017</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15519553</p><p>https://doi.org/10.1016/j.neuroscience.2006.04.020</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16725272</p><p>https://doi.org/10.1152/ajpregu.1987.252.6.R1158</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3296790</p><p>https://doi.org/10.1113/JP273164</p><p>https://doi.org/10.1113/JP273164</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27654879</p><p>https://doi.org/10.1378/chest.123.2.632</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12576394</p><p>https://doi.org/10.1113/JP280220</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33029786</p><p>https://doi.org/10.1016/j.neubiorev.2018.12.020</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30611797</p><p>https://doi.org/10.1016/0304-3940(83)90202-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6672694</p><p>https://doi.org/10.1113/jphysiol.1984.sp015214</p><p>https://doi.org/10.1113/jphysiol.1984.sp015214</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6747857</p><p>https://doi.org/10.1016/j.resp.2021.103653</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33716095</p><p>https://doi.org/10.1016/0006-8993(92)90458-l</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1611506</p><p>https://doi.org/10.1113/JP280243</p><p>https://doi.org/10.1113/JP280243</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32621515</p><p>https://doi.org/10.1523/JNEUROSCI.23-22-07993.2003</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12954860</p><p>https://doi.org/10.3389/fendo.2018.00440</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30127766</p><p>https://doi.org/10.1016/j.neuron.2015.09.034</p><p>https://doi.org/10.1016/j.neuron.2015.09.034</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26447583</p><p>https://doi.org/10.1038/s41467-020-18953-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33060630</p><p>https://doi.org/10.1007/s12311-011-0266-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21479970</p><p>https://doi.org/10.1113/JP274437</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28488367</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 45 of 67</p><p>Fu JY, Yu XD, Zhu Y, Xie SZ, Tang MY, Yu B, Li XM. 2020. Whole- brain map of long- range monosynaptic inputs to</p><p>different cell types in</p><p>the amygdala of the mouse. Neuroscience Bulletin 36:1381–1394. DOI: https://doi.org/</p><p>10.1007/s12264-020-00545-z, PMID: 32691225</p><p>Fujita H, Kodama T, du Lac S. 2020. Modular output circuits of the fastigial nucleus for diverse motor and</p><p>nonmotor functions of the cerebellar vermis. eLife 9:e58613. DOI: https://doi.org/10.7554/eLife.58613, PMID:</p><p>32639229</p><p>Fukushi I, Yokota S, Okada Y. 2019. The role of the hypothalamus in modulation of respiration. Respiratory</p><p>Physiology & Neurobiology 265:172–179. DOI: https://doi.org/10.1016/j.resp.2018.07.003, PMID: 30009993</p><p>Fuller DD, Williams JS, Janssen PL, Fregosi RF. 1999. Effect of co‐activation of tongue protrudor and retractor</p><p>muscles on tongue movements and pharyngeal airflow mechanics in the rat. The Journal of Physiology</p><p>519:601–613. DOI: https://doi.org/10.1111/j.1469-7793.1999.0601m.x, PMID: 10457075</p><p>Fulwiler CE, Saper CB. 1984. Subnuclear organization of the efferent connections of the parabrachial nucleus in</p><p>the rat. Brain Research Reviews 7:229–259. DOI: https://doi.org/10.1016/0165-0173(84)90012-2</p><p>Fung SJ, Yamuy J, Sampogna S, Morales FR, Chase MH. 2001. Hypocretin (orexin) input to trigeminal and</p><p>hypoglossal motoneurons in the cat: a double- labeling immunohistochemical study. Brain Research 903:257–</p><p>262. DOI: https://doi.org/10.1016/S0006-8993(01)02318-6, PMID: 11382413</p><p>Fusco AF, Pucci LA, Switonski PM, Biswas DD, McCall AL, Kahn AF, Dhindsa JS, Strickland LM, La Spada AR,</p><p>ElMallah MK. 2021. Respiratory dysfunction in a mouse model of spinocerebellar ataxia type 7. Disease Models</p><p>& Mechanisms 14:dmm048893. DOI: https://doi.org/10.1242/dmm.048893, PMID: 34160002</p><p>Gang S, Sato Y, Kohama I, Aoki M. 1995. Afferent projections to the Bötzinger complex from the upper cervical</p><p>cord and other respiratory related structures in the brainstem in cats: retrograde WGA- HRP tracing. Journal of</p><p>the Autonomic Nervous System 56:1–7. DOI: https://doi.org/10.1016/0165-1838(95)00049-x, PMID: 8786271</p><p>Gao Z, van Beugen BJ, De Zeeuw CI. 2012. Distributed synergistic plasticity and cerebellar learning. Nature</p><p>Reviews. Neuroscience 13:619–635. DOI: https://doi.org/10.1038/nrn3312, PMID: 22895474</p><p>Gao Z, Proietti- Onori M, Lin Z, Ten Brinke MM, Boele HJ, Potters JW, Ruigrok TJH, Hoebeek FE, De Zeeuw CI.</p><p>2016. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning.</p><p>Neuron 89:645–657. DOI: https://doi.org/10.1016/j.neuron.2016.01.008, PMID: 26844836</p><p>Gardner WN. 1996. The pathophysiology of hyperventilation disorders. Chest 109:516–534. DOI: https://doi.</p><p>org/10.1378/chest.109.2.516, PMID: 8620731</p><p>Gargaglioni LH, Hartzler LK, Putnam RW. 2010. The locus coeruleus and central chemosensitivity. Respiratory</p><p>Physiology & Neurobiology 173:264–273. DOI: https://doi.org/10.1016/j.resp.2010.04.024, PMID: 20435170</p><p>Gargaglioni LH, Marques DA, Patrone LGA. 2019. Sex differences in breathing. Comparative Biochemistry and</p><p>Physiology. Part A, Molecular & Integrative Physiology 238:110543. DOI: https://doi.org/10.1016/j.cbpa.2019.</p><p>110543, PMID: 31445081</p><p>Gasparini S, Howland JM, Thatcher AJ, Geerling JC. 2020. Central afferents to the nucleus of the solitary tract in</p><p>rats and mice. The Journal of Comparative Neurology 528:2708–2728. DOI: https://doi.org/10.1002/cne.</p><p>24927, PMID: 32307700</p><p>Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. 2020. Leptin:</p><p>Master regulator of biological functions that affects breathing. Comprehensive Physiology 10:1047–1083. DOI:</p><p>https://doi.org/10.1002/cphy.c190031, PMID: 32941688</p><p>Gautier H, Remmers JE, Bartlett D. 1973. Control of the duration of expiration. Respiration Physiology 18:205–</p><p>221. DOI: https://doi.org/10.1016/0034-5687(73)90051-0, PMID: 4269825</p><p>Gavello D, Carbone E, Carabelli V. 2016. Leptin- mediated ion channel regulation: PI3K pathways, physiological</p><p>role, and therapeutic potential. Channels 10:282–296. DOI: https://doi.org/10.1080/19336950.2016.1164373,</p><p>PMID: 27018500</p><p>Gaytán SP, Pásaro R. 1998. Connections of the rostral ventral respiratory neuronal cell group: An anterograde</p><p>and retrograde tracing study in the rat. Brain Research Bulletin 47:625–642. DOI: https://doi.org/10.1016/</p><p>s0361-9230(98)00125-7, PMID: 10078619</p><p>Geerling JC, Shin JW, Chimenti PC, Loewy AD. 2010. Paraventricular hypothalamic nucleus: Axonal projections</p><p>to the brainstem. The Journal of Comparative Neurology 518:1460–1499. DOI: https://doi.org/10.1002/cne.</p><p>22283, PMID: 20187136</p><p>Geerling JC, Yokota S, Rukhadze I, Roe D, Chamberlin NL. 2017. Kölliker- fuse gabaergic and glutamatergic</p><p>neurons project to distinct targets. The Journal of Comparative Neurology 525:1844–1860. DOI: https://doi.</p><p>org/10.1002/cne.24164, PMID: 28032634</p><p>Gerrits PO, Holstege G. 1996. Pontine and medullary projections to the nucleus retroambiguus: a wheat germ</p><p>agglutinin- horseradish peroxidase and autoradiographic tracing study in the cat. The Journal of Comparative</p><p>Neurology 373:173–185. DOI: https://doi.org/10.1002/(SICI)1096-9861(19960916)373:2<173::AID-</p><p>CNE2>3.0.CO;2-0, PMID: 8889920</p><p>Gesell R, White F. 1938. RECRUITMENT of muscular activity and the central neurone after- discharge of</p><p>hyperpnea. American Journal of Physiology- Legacy Content 122:48–56. DOI: https://doi.org/10.1152/</p><p>ajplegacy.1938.122.1.48</p><p>Gestreau C, Dutschmann M, Obled S, Bianchi AL. 2005. Activation of XII motoneurons and premotor neurons</p><p>during various oropharyngeal behaviors. Respiratory Physiology & Neurobiology 147:159–176. DOI: https://</p><p>doi.org/10.1016/j.resp.2005.03.015, PMID: 15919245</p><p>Gestreau C, Heitzmann D, Thomas J, Dubreuil V, Bandulik S, Reichold M, Bendahhou S, Pierson P, Sterner C,</p><p>Peyronnet- Roux J, Benfriha C, Tegtmeier I, Ehnes H, Georgieff M, Lesage F, Brunet JF, Goridis C, Warth R,</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1007/s12264-020-00545-z</p><p>https://doi.org/10.1007/s12264-020-00545-z</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32691225</p><p>https://doi.org/10.7554/eLife.58613</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32639229</p><p>https://doi.org/10.1016/j.resp.2018.07.003</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30009993</p><p>https://doi.org/10.1111/j.1469-7793.1999.0601m.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10457075</p><p>https://doi.org/10.1016/0165-0173(84)90012-2</p><p>https://doi.org/10.1016/S0006-8993(01)02318-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11382413</p><p>https://doi.org/10.1242/dmm.048893</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34160002</p><p>https://doi.org/10.1016/0165-1838(95)00049-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8786271</p><p>https://doi.org/10.1038/nrn3312</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22895474</p><p>https://doi.org/10.1016/j.neuron.2016.01.008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26844836</p><p>https://doi.org/10.1378/chest.109.2.516</p><p>https://doi.org/10.1378/chest.109.2.516</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8620731</p><p>https://doi.org/10.1016/j.resp.2010.04.024</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20435170</p><p>https://doi.org/10.1016/j.cbpa.2019.110543</p><p>https://doi.org/10.1016/j.cbpa.2019.110543</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31445081</p><p>https://doi.org/10.1002/cne.24927</p><p>https://doi.org/10.1002/cne.24927</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32307700</p><p>https://doi.org/10.1002/cphy.c190031</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32941688</p><p>https://doi.org/10.1016/0034-5687(73)90051-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/4269825</p><p>https://doi.org/10.1080/19336950.2016.1164373</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27018500</p><p>https://doi.org/10.1016/s0361-9230(98)00125-7</p><p>https://doi.org/10.1016/s0361-9230(98)00125-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10078619</p><p>https://doi.org/10.1002/cne.22283</p><p>https://doi.org/10.1002/cne.22283</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20187136</p><p>https://doi.org/10.1002/cne.24164</p><p>https://doi.org/10.1002/cne.24164</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28032634</p><p>https://doi.org/10.1002/(SICI)1096-9861(19960916)373:2<173::AID-CNE2>3.0.CO;2-0</p><p>https://doi.org/10.1002/(SICI)1096-9861(19960916)373:2<173::AID-CNE2>3.0.CO;2-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8889920</p><p>https://doi.org/10.1152/ajplegacy.1938.122.1.48</p><p>https://doi.org/10.1152/ajplegacy.1938.122.1.48</p><p>from the cerebellar nuclei to the MDJ and from there to the inferior olive. Sagittal sections from rostral to caudal (see schemes in the lower left corners</p><p>with red rectangles indicating locations of images). FR = fasciculus retroflexus, RN = red nucleus. (E) A neuron (yellow) in the MDJ that projects to the</p><p>inferior olive. Close to the soma of this neuron, a bouton (magenta) of a neuron originating from the cerebellar nuclei can be seen (insets below, imaged</p><p>at two levels 0.7µm apart). Panels B- E originate from a representative mouse and are modified from Figure 7 from Wang etal., 2022.</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 5 of 67</p><p>are just seen at the motor output remains topic of further research. As stated, we discuss in this review</p><p>multiple mechanisms that modulate the rhythmicity of respiration when confronted with respiratory</p><p>challenges, such as a change in air pressure or increase in CO2 concentration (hypercapnia).</p><p>During regular breathing, the respiratory cycle is determined by brainstem central pattern genera-</p><p>tors. Inspiration is triggered by activity of neurons in the pre- Bötzinger complex, most of which fire in</p><p>phase with inspiration and indirectly drive the inspiratory pump muscles (Smith etal., 1991; Guyenet</p><p>and Wang, 2001; Moore etal., 2013; Del Negro etal., 2018; Yang and Feldman, 2018). Inspiration</p><p>may be terminated by activation of the Kölliker- Fuse nucleus, and possibly also the postinspiratory</p><p>I nspiration Post-in</p><p>sp</p><p>ira</p><p>tio</p><p>n</p><p>A</p><p>ctive expiration</p><p>B</p><p>A</p><p>Pre-</p><p>Bötzinger</p><p>complex</p><p>Lateral</p><p>parafacial</p><p>nucleus</p><p>Bötzinger</p><p>complex</p><p>Bötzinger complex (E-AUG)</p><p>Kölliker-Fuse nucleus (I-AUG)</p><p>Kölliker-Fuse nucleus (E-DEC) Abdominal muscles</p><p>Pre-Bötzinger complex (I-AUG) Abdominal muscles</p><p>Lateral parafacial nucleus</p><p>Lateral parafacial nucleus</p><p>Phrenic nerve C Eupnea</p><p>D Hyperpnea</p><p>Exp.Exp. Insp. Insp. Exp. Exp.Insp. Insp.</p><p>Exp. Exp.Insp. Insp. Insp.</p><p>Kölliker-</p><p>Fuse</p><p>nucleus</p><p>Figure 3. Central pattern generators encode the respiratory rhythm. (A) Connections between the pre- Bötzinger</p><p>complex that organizes inspiration, the Kölliker- Fuse nucleus that relates to the inspiration/expiration switch,</p><p>the lateral parafacial nucleus that triggers active expiration, and the Bötzinger complex related to expiration. (B)</p><p>Neuronal activity in the central pattern generators varies during the respiratory cycle. The schematized traces</p><p>represent action potential firing of selected neuronal cell types in relation to activity of the phrenic nerve that</p><p>drives the main inspiratory pump muscle, the diaphragm. From top to bottom: augmenting inspiratory neurons</p><p>(I- AUG) from the pre- Bötzinger complex and the Kölliker- Fuse nucleus, a decreasing expiratory neuron (E- DEC)</p><p>from the Kölliker- Fuse nucleus, and an augmenting expiratory neuron (E- AUG) from the Bötzinger complex. These</p><p>representations are based on in vitro studies of Marchenko etal., 2016 (pre- Bötzinger complex), Ezure and</p><p>Tanaka, 2006 (Kölliker- Fuse nucleus), and Flor etal., 2020 (Bötzinger complex). (C) During eupnea, thus in the</p><p>absence of active expiration, neither the expiratory pump muscles of the abdomen, nor the neurons of the lateral</p><p>parafacial nucleus are active. (D) During hyperpnea, thus when active expiration takes place, abdominal expiratory</p><p>pump muscles are active when the lateral parafacial nucleus neurons produce action potentials. Schematized</p><p>based on in vivo recordings of anesthetized rats by Pagliardini etal., 2011. Insp.=inspiration, Exp.=expiration.</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 6 of 67</p><p>complex can contribute to this (Dutschmann and Herbert, 2006; Anderson etal., 2016). Finally, the</p><p>lateral parafacial nucleus that is silent during eupnea becomes active during active expiration (Pagliar-</p><p>dini etal., 2011; Huckstepp etal., 2015; Del Negro etal., 2018; Figure3). Without input from the</p><p>brainstem, the spinal circuitry cannot organize respiration. It does contribute to sequential contraction</p><p>of thoracic muscles to optimize the inflow of air by adjusting muscle control to body biomechanics</p><p>(Marckwald, 1889; Porter, 1895; Ellenberger and Feldman, 1988; Butler etal., 2014; Shinozaki</p><p>etal., 2019; Jensen etal., 2019).</p><p>Pre-Bötzinger and Bötzinger complexes</p><p>The pre- Bötzinger complex contains a network of neurons generating rhythmic activity that is both</p><p>essential and sufficient to drive inspiration (Smith etal., 1991; Ramirez etal., 1998; Gray etal.,</p><p>2001; Tan etal., 2008; Schwarzacher etal., 2011; Ashhad and Feldman, 2020; Dhingra etal.,</p><p>2020; Figure3B). In rodents, the pre- Bötzinger complex consists of around 3,000 neurons on each</p><p>side of the brain, with approximately equal numbers of excitatory and inhibitory neurons (Wallen-</p><p>Mackenzie etal., 2006; Tan etal., 2008; Yackle etal., 2017). Inspiratory neurons with comparable</p><p>dynamics may also be found in surrounding regions of the ventral respiratory column, pointing toward</p><p>a more diffuse spatiotemporal network than originally described (Baertsch etal., 2019). The rhyth-</p><p>mogenic kernel is formed by somatostatin- negative (SST-) excitatory interneurons (Cui etal., 2016;</p><p>Ashhad and Feldman, 2020). Excitatory neurons in the pre- Bötzinger complex have a refractory</p><p>period that prevents them from generating bursts at a high frequency, and this refractory period can</p><p>be shortened by inhibitory input (Baertsch etal., 2018). Hence, although inhibitory interneurons are</p><p>not essential for generating rhythmicity, they may modulate the breathing frequency and contribute</p><p>to the termination of inspiration (Janczewski etal., 2013; Sherman etal., 2015; Hülsmann etal.,</p><p>2021). The output of the pre- Bötzinger complex is composed of both inhibitory and SST+ excitatory</p><p>neurons.</p><p>Although there are direct projections from the pre- Bötzinger complex to multiple respiratory</p><p>motor nuclei, indirect projections appear to be more common. As such, the phrenic nucleus is</p><p>predominantly targeted via the rostral ventral respiratory group (rVRG) (Wu etal., 2017), and the</p><p>thoracic motor neurons that control abdominal muscles via the caudal ventral respiratory group</p><p>(cVRG) (Gerrits and Holstege, 1996; Yang and Feldman, 2018). In addition, the hypoglossal</p><p>nucleus is principally reached via the parahypoglossal region of the reticular formation (Chamberlin</p><p>etal., 2007; Tan etal., 2010; Yang and Feldman, 2018), and the facial nucleus via the intermediate</p><p>reticular formation (Moore etal., 2004; Koshiya etal., 2014; Yang and Feldman, 2018; Guo etal.,</p><p>2020).</p><p>In addition, there are substantial projections to other respiratory control areas: the Bötzinger</p><p>complex, Kölliker- Fuse nucleus, postinspiratory complex (PiCo), and lateral parafacial nucleus (Tan</p><p>etal., 2010; Koshiya etal., 2014; Yang and Feldman, 2018; Biancardi etal., 2021). Furthermore,</p><p>also the retrotrapezoid nucleus, nucleus tractus solitarii (NTS), lateral and dorsomedial hypothalamus,</p><p>lateral and medial parabrachial nuclei, and periaqueductal gray are targeted (Tan etal., 2010; Koshiya</p><p>etal., 2014; Yang and Feldman, 2018; Biancardi etal., 2021; Trevizan- Baú etal., 2021b). A specific</p><p>subset of Cdh9- neurons projects to noradrenergic neurons in the locus coeruleus (Yackle etal., 2017).</p><p>Finally, there are strong projections to the contralateral pre- Bötzinger complex to promote left/right</p><p>synchrony during respiration (Wu etal., 2017).</p><p>The adjacent Bötzinger complex houses mostly inhibitory neurons that either show decrementing</p><p>activity during post- inspiration or incrementing activity during expiration, and both groups contribute</p><p>to the inhibition of inspiratory activity in the pre- Bötzinger complex during expiration (Marchenko</p><p>etal., 2016; Ausborn etal., 2018; Flor etal., 2020). These activity patterns partially</p><p>https://doi.org/10.1016/j.resp.2005.03.015</p><p>https://doi.org/10.1016/j.resp.2005.03.015</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15919245</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 46 of 67</p><p>Barhanin J. 2010. Task2 potassium channels set central respiratory CO2 and O2 sensitivity. PNAS 107:2325–</p><p>2330. DOI: https://doi.org/10.1073/pnas.0910059107, PMID: 20133877</p><p>Gonzalez C, Almaraz L, Obeso A, Rigual R. 1994. Carotid body chemoreceptors: from natural stimuli to sensory</p><p>discharges. Physiological Reviews 74:829–898. DOI: https://doi.org/10.1152/physrev.1994.74.4.829, PMID:</p><p>7938227</p><p>Gourine AV, Llaudet E, Dale N, Spyer KM. 2005. Atp is a mediator of chemosensory transduction in the central</p><p>nervous system. Nature 436:108–111. DOI: https://doi.org/10.1038/nature03690, PMID: 16001070</p><p>Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K,</p><p>Kasparov S. 2010. Astrocytes control breathing through ph- dependent release of ATP. Science 329:571–575.</p><p>DOI: https://doi.org/10.1126/science.1190721, PMID: 20647426</p><p>Gourine AV, Dale N. 2022. Brain H+/CO2 sensing and control by glial cells. Glia 70:1520–1535. DOI: https://doi.</p><p>org/10.1002/glia.24152, PMID: 35102601</p><p>Grace M, Birrell MA, Dubuis E, Maher SA, Belvisi MG. 2012. Transient receptor potential channels mediate the</p><p>tussive response to prostaglandin E2 and bradykinin. Thorax 67:891–900. DOI: https://doi.org/10.1136/</p><p>thoraxjnl-2011-201443, PMID: 22693178</p><p>Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL. 2001. Normal breathing requires preBötzinger</p><p>complex neurokinin- 1 receptor- expressing neurons. Nature Neuroscience 4:927–930. DOI: https://doi.org/10.</p><p>1038/nn0901-927, PMID: 11528424</p><p>Gruart A, Delgado- García JM. 1992. Respiration- related neurons recorded in the deep cerebellar nuclei of the</p><p>alert cat. Neuroreport 3:365–368. DOI: https://doi.org/10.1097/00001756-199204000-00019, PMID: 1515597</p><p>Guan XM, Hess JF, Yu H, Hey PJ, van der Ploeg LH. 1997. Differential expression of mRNA for leptin receptor</p><p>isoforms in the rat brain. Molecular and Cellular Endocrinology 133:1–7. DOI: https://doi.org/10.1016/</p><p>s0303- 7207(97)00138-x, PMID: 9359467</p><p>Guedes LU, Rodrigues JM, Fernandes AA, Cardoso FE, Parreira VF. 2012. Respiratory changes in Parkinson’s</p><p>disease may be unrelated to dopaminergic dysfunction. Arquivos de Neuro- Psiquiatria 70:847–851. DOI:</p><p>https://doi.org/10.1590/s0004-282x2012001100005, PMID: 23175196</p><p>Guilherme EM, Moreira R, de Oliveira A, Ferro AM, Di Lorenzo VAP, Gianlorenço ACL. 2021. Respiratory</p><p>disorders in parkinson’s disease. Journal of Parkinson’s Disease 11:993–1010. DOI: https://doi.org/10.3233/</p><p>JPD-212565, PMID: 33780376</p><p>Guo H, Yuan XS, Zhou JC, Chen H, Li SQ, Qu WM, Huang ZL. 2020. Whole- Brain monosynaptic inputs to</p><p>hypoglossal motor neurons in mice. Neuroscience Bulletin 36:585–597. DOI: https://doi.org/10.1007/s12264-</p><p>020-00468-9, PMID: 32096114</p><p>Guyenet PG, Wang H. 2001. Pre- Bötzinger neurons with preinspiratory discharges “ in vivo ” express NK1</p><p>receptors in the rat. Journal of Neurophysiology 86:438–446. DOI: https://doi.org/10.1152/jn.2001.86.1.438,</p><p>PMID: 11431523</p><p>Guyenet PG, Stornetta RL, Bayliss DA. 2008. Retrotrapezoid nucleus and central chemoreception. The Journal of</p><p>Physiology 586:2043–2048. DOI: https://doi.org/10.1113/jphysiol.2008.150870, PMID: 18308822</p><p>Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P,</p><p>Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD, Jones DN, Smith MI, Piper DC, Hunter AJ,</p><p>Porter RA, etal. 1999. Orexin a activates locus coeruleus cell firing and increases arousal in the rat. PNAS</p><p>96:10911–10916. DOI: https://doi.org/10.1073/pnas.96.19.10911, PMID: 10485925</p><p>Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. 1997. The cerebellar- hypothalamic axis: Basic circuits and</p><p>clinical observations. International Review of Neurobiology 41:83–107. DOI: https://doi.org/10.1016/s0074-</p><p>7742(08)60348-7, PMID: 9378614</p><p>Halberstadt AL, Balaban CD. 2006. Serotonergic and nonserotonergic neurons in the dorsal raphe nucleus send</p><p>collateralized projections to both the vestibular nuclei and the central amygdaloid nucleus. Neuroscience</p><p>140:1067–1077. DOI: https://doi.org/10.1016/j.neuroscience.2006.02.053, PMID: 16600519</p><p>Haldane JS, Priestley JG. 1905. The regulation of the lung- ventilation. The Journal of Physiology 32:225–266.</p><p>DOI: https://doi.org/10.1113/jphysiol.1905.sp001081, PMID: 16992774</p><p>Harper RM, Frysinger RC, Trelease RB, Marks JD. 1984. State- Dependent alteration of respiratory cycle timing</p><p>by stimulation of the central nucleus of the amygdala. Brain Research 306:1–8. DOI: https://doi.org/10.1016/</p><p>0006-8993(84)90350-0, PMID: 6466967</p><p>Harvey RJ, Napper RMA. 1991. Quantitative studies on the mammalian cerebellum. Progress in Neurobiology</p><p>36:437–463. DOI: https://doi.org/10.1016/0301-0082(91)90012-p, PMID: 1947173</p><p>Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K, Yaginuma H. 2018. Anatomical evidence for a direct</p><p>projection from purkinje cells in the mouse cerebellar vermis to medial parabrachial nucleus. Frontiers in Neural</p><p>Circuits 12:6. DOI: https://doi.org/10.3389/fncir.2018.00006, PMID: 29467628</p><p>Hayakawa T, Takanaga A, Maeda S, Ito H, Seki M. 2000. Monosynaptic inputs from the nucleus tractus solitarii to</p><p>the laryngeal motoneurons in the nucleus ambiguus of the rat. Anatomy and Embryology 202:411–420. DOI:</p><p>https://doi.org/10.1007/s004290000120, PMID: 11089932</p><p>Hayashi F, Coles SK, McCrimmon DR. 1996. Respiratory neurons mediating the breuer- hering reflex</p><p>prolongation of expiration in rat. The Journal of Neuroscience 16:6526–6536. DOI: https://doi.org/10.1523/</p><p>JNEUROSCI.16-20-06526.1996, PMID: 8815930</p><p>Hayat H, Regev N, Matosevich N, Sales A, Paredes- Rodriguez E, Krom AJ, Bergman L, Li Y, Lavigne M,</p><p>Kremer EJ, Yizhar O, Pickering AE, Nir Y. 2020. Locus coeruleus norepinephrine activity mediates sensory-</p><p>evoked awakenings from sleep. Science Advances 6:eaaz4232. DOI: https://doi.org/10.1126/sciadv.aaz4232,</p><p>PMID: 32285002</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1073/pnas.0910059107</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20133877</p><p>https://doi.org/10.1152/physrev.1994.74.4.829</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7938227</p><p>https://doi.org/10.1038/nature03690</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16001070</p><p>https://doi.org/10.1126/science.1190721</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20647426</p><p>https://doi.org/10.1002/glia.24152</p><p>https://doi.org/10.1002/glia.24152</p><p>http://www.ncbi.nlm.nih.gov/pubmed/35102601</p><p>https://doi.org/10.1136/thoraxjnl-2011-201443</p><p>https://doi.org/10.1136/thoraxjnl-2011-201443</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22693178</p><p>https://doi.org/10.1038/nn0901-927</p><p>https://doi.org/10.1038/nn0901-927</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11528424</p><p>https://doi.org/10.1097/00001756-199204000-00019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1515597</p><p>https://doi.org/10.1016/s0303-7207(97)00138-x</p><p>https://doi.org/10.1016/s0303-7207(97)00138-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9359467</p><p>https://doi.org/10.1590/s0004-282x2012001100005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23175196</p><p>https://doi.org/10.3233/JPD-212565</p><p>https://doi.org/10.3233/JPD-212565</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33780376</p><p>https://doi.org/10.1007/s12264-020-00468-9</p><p>https://doi.org/10.1007/s12264-020-00468-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32096114</p><p>https://doi.org/10.1152/jn.2001.86.1.438</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11431523</p><p>https://doi.org/10.1113/jphysiol.2008.150870</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18308822</p><p>https://doi.org/10.1073/pnas.96.19.10911</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10485925</p><p>https://doi.org/10.1016/s0074-7742(08)60348-7</p><p>https://doi.org/10.1016/s0074-7742(08)60348-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9378614</p><p>https://doi.org/10.1016/j.neuroscience.2006.02.053</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16600519</p><p>https://doi.org/10.1113/jphysiol.1905.sp001081</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16992774</p><p>https://doi.org/10.1016/0006-8993(84)90350-0</p><p>https://doi.org/10.1016/0006-8993(84)90350-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6466967</p><p>https://doi.org/10.1016/0301-0082(91)90012-p</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1947173</p><p>https://doi.org/10.3389/fncir.2018.00006</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29467628</p><p>https://doi.org/10.1007/s004290000120</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11089932</p><p>https://doi.org/10.1523/JNEUROSCI.16-20-06526.1996</p><p>https://doi.org/10.1523/JNEUROSCI.16-20-06526.1996</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8815930</p><p>https://doi.org/10.1126/sciadv.aaz4232</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32285002</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 47 of 67</p><p>Hazrati LN, Parent A. 1992. Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the</p><p>squirrel monkey. Brain Research 585:267–271. DOI: https://doi.org/10.1016/0006-8993(92)91216-2, PMID:</p><p>1380869</p><p>Heck DH, McAfee SS, Liu Y, Babajani- Feremi A, Rezaie R, Freeman WJ, Wheless JW, Papanicolaou AC,</p><p>Ruszinkó M, Sokolov Y, Kozma R. 2016. Breathing as a fundamental rhythm of brain function. Frontiers in</p><p>Neural Circuits 10:115. DOI: https://doi.org/10.3389/fncir.2016.00115, PMID: 28127277</p><p>Hennessy ML, Corcoran AE, Brust RD, Chang Y, Nattie EE, Dymecki SM. 2017. Activity of tachykinin1- expressing</p><p>pet1 raphe neurons modulates the respiratory chemoreflex. The Journal of Neuroscience 37:1807–1819. DOI:</p><p>https://doi.org/10.1523/JNEUROSCI.2316-16.2016</p><p>Henschke JU, Pakan JM. 2020. Disynaptic cerebrocerebellar pathways originating from multiple functionally</p><p>distinct cortical areas. eLife 9:e59148. DOI: https://doi.org/10.7554/eLife.59148, PMID: 32795386</p><p>Herbert H, Moga MM, Saper CB. 1990. Connections of the parabrachial nucleus with the nucleus of the solitary</p><p>tract and the medullary reticular formation in the rat. The Journal of Comparative Neurology 293:540–580.</p><p>DOI: https://doi.org/10.1002/cne.902930404, PMID: 1691748</p><p>Herbert H, Saper CB. 1992. Organization of medullary adrenergic and noradrenergic projections to the</p><p>periaqueductal gray matter in the rat. The Journal of Comparative Neurology 315:34–52. DOI: https://doi.org/</p><p>10.1002/cne.903150104, PMID: 1371780</p><p>Hermann DM, Luppi PH, Peyron C, Hinckel P, Jouvet M. 1997. Afferent projections to the rat nuclei raphe</p><p>magnus, raphe pallidus and reticularis gigantocellularis pars alpha demonstrated by iontophoretic application</p><p>of choleratoxin (subunit B). Journal of Chemical Neuroanatomy 13:1–21. DOI: https://doi.org/10.1016/</p><p>s0891- 0618(97)00019-7, PMID: 9271192</p><p>Hernandez JP, Xu F, Frazier DT. 2004. Medial vestibular nucleus mediates the cardiorespiratory responses to</p><p>fastigial nuclear activation and hypercapnia. Journal of Applied Physiology 97:835–842. DOI: https://doi.org/</p><p>10.1152/japplphysiol.00134.2004, PMID: 15333625</p><p>Herrero JL, Khuvis S, Yeagle E, Cerf M, Mehta AD. 2018. Breathing above the brain stem: volitional control and</p><p>attentional modulation in humans. Journal of Neurophysiology 119:145–159. DOI: https://doi.org/10.1152/jn.</p><p>00551.2017, PMID: 28954895</p><p>Hilaire G, Viemari JC, Coulon P, Simonneau M, Bévengut M. 2004. Modulation of the respiratory rhythm</p><p>generator by the pontine noradrenergic A5 and A6 groups in rodents. Respiratory Physiology & Neurobiology</p><p>143:187–197. DOI: https://doi.org/10.1016/j.resp.2004.04.016, PMID: 15519555</p><p>Hirsch JA, Bishop B. 1981. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate.</p><p>The American Journal of Physiology 241:H620–H629. DOI: https://doi.org/10.1152/ajpheart.1981.241.4.H620,</p><p>PMID: 7315987</p><p>Ho CY, Gu Q, Lin YS, Lee LY. 2001. Sensitivity of vagal afferent endings to chemical irritants in the rat lung.</p><p>Respiration Physiology 127:113–124. DOI: https://doi.org/10.1016/s0034-5687(01)00241-9, PMID: 11504584</p><p>Hollinshead WH, Keswani NH. 1956. Localization of the phrenic nucleus in the spinal cord of man. The</p><p>Anatomical Record 125:683–699. DOI: https://doi.org/10.1002/ar.1091250403, PMID: 13362956</p><p>Holstege G. 1989. Anatomical study of the final common pathway for vocalization in the cat. The Journal of</p><p>Comparative Neurology 284:242–252. DOI: https://doi.org/10.1002/cne.902840208, PMID: 2754035</p><p>Holstege G. 2014. The periaqueductal gray controls brainstem emotional motor systems including respiration.</p><p>Progress in Brain Research 209:379–405. DOI: https://doi.org/10.1016/B978-0-444-63274-6.00020-5, PMID:</p><p>24746059</p><p>Holstege G, Subramanian HH. 2016. Two different motor systems are needed to generate human speech. The</p><p>Journal of Comparative Neurology 524:1558–1577. DOI: https://doi.org/10.1002/cne.23898, PMID: 26355872</p><p>Hopkins DA, Holstege G. 1978. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in</p><p>the cat. Experimental Brain Research 32:529–547. DOI: https://doi.org/10.1007/BF00239551, PMID: 689127</p><p>Horner RL. 2012. Neural control of the upper airway: integrative physiological mechanisms and relevance for</p><p>sleep disordered breathing. Comprehensive Physiology 2:479–535. DOI: https://doi.org/10.1002/cphy.</p><p>c110023, PMID: 23728986</p><p>Huang Q, Zhou D, St John WM. 1993. Cerebellar control of expiratory activities of medullary neurons and spinal</p><p>nerves. Journal of Applied Physiology 74:1934–1940. DOI: https://doi.org/10.1152/jappl.1993.74.4.1934,</p><p>PMID: 8514714</p><p>Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW. 2013. Convergence of pontine</p><p>and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2:e00400. DOI: https://doi.org/10.</p><p>7554/eLife.00400, PMID: 23467508</p><p>Huckstepp RTR, id Bihi R, Eason R, Spyer KM, Dicke N, Willecke K, Marina N, Gourine AV, Dale N. 2010.</p><p>Connexin hemichannel- mediated CO2- dependent release of ATP in the medulla oblongata contributes to</p><p>central respiratory chemosensitivity. The Journal of Physiology 588:3901–3920. DOI: https://doi.org/10.1113/</p><p>jphysiol.2010.192088, PMID: 20736421</p><p>Huckstepp RTR, Cardoza KP, Henderson LE, Feldman JL. 2015. Role of parafacial nuclei in control of breathing in</p><p>adult rats. The Journal of Neuroscience 35:1052–1067. DOI: https://doi.org/10.1523/JNEUROSCI.2953-14.</p><p>2015, PMID: 25609622</p><p>Huerta MF, Hashikawa T, Gayoso MJ, Harting JK. 1985. The trigemino- olivary projection in the cat: contributions</p><p>of individual subnuclei. The Journal of Comparative Neurology 241:180–190. DOI: https://doi.org/10.1002/</p><p>cne.902410206, PMID: 4067013</p><p>Hülsmann S. 2021. The post- inspiratory complex (pico), what is the evidence? The Journal of Physiology</p><p>599:357–359. DOI: https://doi.org/10.1113/JP280492, PMID: 33258194</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1016/0006-8993(92)91216-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1380869</p><p>https://doi.org/10.3389/fncir.2016.00115</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28127277</p><p>https://doi.org/10.1523/JNEUROSCI.2316-16.2016</p><p>https://doi.org/10.7554/eLife.59148</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32795386</p><p>https://doi.org/10.1002/cne.902930404</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1691748</p><p>https://doi.org/10.1002/cne.903150104</p><p>https://doi.org/10.1002/cne.903150104</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1371780</p><p>https://doi.org/10.1016/s0891-0618(97)00019-7</p><p>https://doi.org/10.1016/s0891-0618(97)00019-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9271192</p><p>https://doi.org/10.1152/japplphysiol.00134.2004</p><p>https://doi.org/10.1152/japplphysiol.00134.2004</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15333625</p><p>https://doi.org/10.1152/jn.00551.2017</p><p>https://doi.org/10.1152/jn.00551.2017</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28954895</p><p>https://doi.org/10.1016/j.resp.2004.04.016</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15519555</p><p>https://doi.org/10.1152/ajpheart.1981.241.4.H620</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7315987</p><p>https://doi.org/10.1016/s0034-5687(01)00241-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11504584</p><p>https://doi.org/10.1002/ar.1091250403</p><p>http://www.ncbi.nlm.nih.gov/pubmed/13362956</p><p>https://doi.org/10.1002/cne.902840208</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2754035</p><p>https://doi.org/10.1016/B978-0-444-63274-6.00020-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24746059</p><p>https://doi.org/10.1002/cne.23898</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26355872</p><p>https://doi.org/10.1007/BF00239551</p><p>http://www.ncbi.nlm.nih.gov/pubmed/689127</p><p>https://doi.org/10.1002/cphy.c110023</p><p>https://doi.org/10.1002/cphy.c110023</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23728986</p><p>https://doi.org/10.1152/jappl.1993.74.4.1934</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8514714</p><p>https://doi.org/10.7554/eLife.00400</p><p>https://doi.org/10.7554/eLife.00400</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23467508</p><p>https://doi.org/10.1113/jphysiol.2010.192088</p><p>https://doi.org/10.1113/jphysiol.2010.192088</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20736421</p><p>https://doi.org/10.1523/JNEUROSCI.2953-14.2015</p><p>https://doi.org/10.1523/JNEUROSCI.2953-14.2015</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25609622</p><p>https://doi.org/10.1002/cne.902410206</p><p>https://doi.org/10.1002/cne.902410206</p><p>http://www.ncbi.nlm.nih.gov/pubmed/4067013</p><p>https://doi.org/10.1113/JP280492</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33258194</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 48 of 67</p><p>Hülsmann S, Hagos L, Eulenburg V, Hirrlinger J. 2021. Inspiratory off- switch mediated by optogenetic activation</p><p>of inhibitory neurons in the preBötzinger complex in vivo. International Journal of Molecular Sciences 22:2019.</p><p>DOI: https://doi.org/10.3390/ijms22042019, PMID: 33670653</p><p>Hutchison AA, Wozniak JA, Choi HG, Conlon M, Otto RA, Abrams RM, Kosch PC. 1993. Laryngeal and</p><p>diaphragmatic muscle activities and airflow patterns after birth in premature lambs. Journal of Applied</p><p>Physiology 75:121–131. DOI: https://doi.org/10.1152/jappl.1993.75.1.121, PMID: 8376258</p><p>Infante J, García A, Serrano- Cárdenas KM, González- Aguado R, Gazulla J, de Lucas EM, Berciano J. 2018.</p><p>Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (canvas) with chronic cough and preserved muscle</p><p>stretch reflexes: evidence for selective sparing of afferent Ia fibres. Journal of Neurology 265:1454–1462. DOI:</p><p>https://doi.org/10.1007/s00415-018-8872-1, PMID: 29696497</p><p>Insalaco G, Kuna ST, Costanza BM, Catania G, Cibella F, Bellia V. 1991. Thyroarytenoid muscle activity during</p><p>loaded and nonloaded breathing in adult humans. Journal of Applied Physiology 70:2410–2416. DOI: https://</p><p>doi.org/10.1152/jappl.1991.70.6.2410, PMID: 1885434</p><p>Isaev G, Murphy K, Guz A, Adams L. 2002. Areas of the brain concerned with ventilatory load compensation in</p><p>awake man. The Journal of Physiology 539:935–945. DOI: https://doi.org/10.1113/jphysiol.2001.012957,</p><p>PMID: 11897862</p><p>Ito M. 2000. Mechanisms of motor learning in the cerebellum. Brain Research 886:237–245. DOI: https://doi.</p><p>org/10.1016/s0006-8993(00)03142-5, PMID: 11119699</p><p>Ito J, Roy S, Liu Y, Cao Y, Fletcher M, Lu L, Boughter JD, Grün S, Heck DH. 2014. Whisker barrel cortex delta</p><p>oscillations and gamma power in the awake mouse are linked to respiration. Nature Communications 5:3572.</p><p>DOI: https://doi.org/10.1038/ncomms4572, PMID: 24686563</p><p>Izrailtyan I, Qiu J, Overdyk FJ, Erslon M, Gan TJ, Body S. 2018. Risk factors for cardiopulmonary and respiratory</p><p>arrest in medical and surgical hospital patients on opioid analgesics and sedatives. PLOS ONE 13:e0194553.</p><p>DOI: https://doi.org/10.1371/journal.pone.0194553, PMID: 29566020</p><p>Jakovljevic DG, McConnell AK. 2009. Influence of different breathing frequencies on the severity of inspiratory</p><p>muscle fatigue induced by high- intensity front crawl swimming. Journal of Strength and Conditioning Research</p><p>23:1169–1174. DOI: https://doi.org/10.1519/JSC.0b013e318199d707, PMID: 19528853</p><p>Janczewski WA, Feldman JL. 2006. Distinct rhythm generators for inspiration and expiration in the juvenile rat.</p><p>The Journal of Physiology 570:407–420. DOI: https://doi.org/10.1113/jphysiol.2005.098848, PMID: 16293645</p><p>Janczewski WA, Tashima A, Hsu P, Cui Y, Feldman JL. 2013. Role of inhibition in respiratory pattern generation.</p><p>The Journal of Neuroscience 33:5454–5465. DOI: https://doi.org/10.1523/JNEUROSCI.1595-12.2013, PMID:</p><p>23536061</p><p>Jaramillo AA, Brown JA, Winder DG. 2021. Danger and distress: parabrachial- extended amygdala circuits.</p><p>Neuropharmacology 198:108757. DOI: https://doi.org/10.1016/j.neuropharm.2021.108757, PMID: 34461068</p><p>Jensen VN, Alilain WJ, Crone SA. 2019. Role of propriospinal neurons in control of respiratory muscles and</p><p>recovery of breathing following injury. Frontiers in Systems Neuroscience 13:84. DOI: https://doi.org/10.3389/</p><p>fnsys.2019.00084, PMID: 32009911</p><p>Jiang C, Lipski J. 1990. Extensive monosynaptic inhibition of ventral respiratory group neurons by augmenting</p><p>neurons in the Bötzinger complex in the cat. Experimental Brain Research 81:639–648. DOI: https://doi.org/10.</p><p>1007/BF02423514, PMID: 2226695</p><p>Jolley CJ, Luo YM, Steier J, Reilly C, Seymour J, Lunt A, Ward K, Rafferty GF, Polkey MI, Moxham J. 2009. Neural</p><p>respiratory drive in healthy subjects and in COPD. The European Respiratory Journal 33:289–297. DOI: https://</p><p>doi.org/10.1183/09031936.00093408, PMID: 18829678</p><p>Jones BE, Moore RY. 1977. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic Study.</p><p>Brain Res 127:25–53. DOI: https://doi.org/10.1016/0006-8993(77)90378-X</p><p>Jones BE, Yang TZ. 1985. The efferent projections from the reticular formation and the locus coeruleus studied</p><p>by anterograde and retrograde axonal transport in the rat. The Journal of Comparative Neurology 242:56–92.</p><p>DOI: https://doi.org/10.1002/cne.902420105, PMID: 2416786</p><p>Jones SE, Stanić D, Dutschmann M. 2016. Dorsal and ventral aspects of the most caudal medullary reticular</p><p>formation have differential roles in modulation and formation of the respiratory motor pattern in rat. Brain</p><p>Structure & Function 221:4353–4368. DOI: https://doi.org/10.1007/s00429-015-1165-x, PMID: 26659408</p><p>Ju C, Bosman LWJ, Hoogland TM, Velauthapillai A, Murugesan P, Warnaar P, van Genderen RM, Negrello M,</p><p>De Zeeuw CI. 2019. Neurons of the inferior olive respond to broad classes of sensory input while subject to</p><p>homeostatic control. The Journal of Physiology 597:2483–2514. DOI: https://doi.org/10.1113/JP277413, PMID:</p><p>30908629</p><p>Judd EN, Lewis SM, Person AL. 2021. Diverse inhibitory projections from the cerebellar interposed nucleus. eLife</p><p>10:e66231. DOI: https://doi.org/10.7554/eLife.66231, PMID: 34542410</p><p>Jürgens U. 2002. Neural pathways underlying vocal control. Neuroscience and Biobehavioral Reviews 26:235–</p><p>258. DOI: https://doi.org/10.1016/s0149-7634(01)00068-9, PMID: 11856561</p><p>Kalia LV, Lang AE. 2015. Parkinson’s disease. Lancet 386:896–912. DOI: https://doi.org/10.1016/S0140-6736(14)</p><p>61393-3, PMID: 25904081</p><p>Kastner A, Gauthier P. 2008. Are rodents an appropriate pre- clinical model for treating spinal cord injury?</p><p>examples from the respiratory system. Experimental Neurology 213:249–256. DOI: https://doi.org/10.1016/j.</p><p>expneurol.2008.07.008, PMID: 18675802</p><p>Kastrup A, Krüger G, Glover GH, Neumann- Haefelin T, Moseley ME. 1999. Regional variability of cerebral blood</p><p>oxygenation response to hypercapnia. NeuroImage 10:675–681. DOI: https://doi.org/10.1006/nimg.1999.</p><p>0505, PMID: 10600413</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.3390/ijms22042019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33670653</p><p>https://doi.org/10.1152/jappl.1993.75.1.121</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8376258</p><p>https://doi.org/10.1007/s00415-018-8872-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29696497</p><p>https://doi.org/10.1152/jappl.1991.70.6.2410</p><p>https://doi.org/10.1152/jappl.1991.70.6.2410</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1885434</p><p>https://doi.org/10.1113/jphysiol.2001.012957</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11897862</p><p>https://doi.org/10.1016/s0006-8993(00)03142-5</p><p>https://doi.org/10.1016/s0006-8993(00)03142-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11119699</p><p>https://doi.org/10.1038/ncomms4572</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24686563</p><p>https://doi.org/10.1371/journal.pone.0194553</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29566020</p><p>https://doi.org/10.1519/JSC.0b013e318199d707</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19528853</p><p>https://doi.org/10.1113/jphysiol.2005.098848</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16293645</p><p>https://doi.org/10.1523/JNEUROSCI.1595-12.2013</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23536061</p><p>https://doi.org/10.1016/j.neuropharm.2021.108757</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34461068</p><p>https://doi.org/10.3389/fnsys.2019.00084</p><p>https://doi.org/10.3389/fnsys.2019.00084</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32009911</p><p>https://doi.org/10.1007/BF02423514</p><p>https://doi.org/10.1007/BF02423514</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2226695</p><p>https://doi.org/10.1183/09031936.00093408</p><p>https://doi.org/10.1183/09031936.00093408</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18829678</p><p>https://doi.org/10.1016/0006-8993(77)90378-X</p><p>https://doi.org/10.1002/cne.902420105</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2416786</p><p>https://doi.org/10.1007/s00429-015-1165-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26659408</p><p>https://doi.org/10.1113/JP277413</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30908629</p><p>https://doi.org/10.7554/eLife.66231</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34542410</p><p>https://doi.org/10.1016/s0149-7634(01)00068-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11856561</p><p>https://doi.org/10.1016/S0140-6736(14)61393-3</p><p>https://doi.org/10.1016/S0140-6736(14)61393-3</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25904081</p><p>https://doi.org/10.1016/j.expneurol.2008.07.008</p><p>https://doi.org/10.1016/j.expneurol.2008.07.008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18675802</p><p>https://doi.org/10.1006/nimg.1999.0505</p><p>https://doi.org/10.1006/nimg.1999.0505</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10600413</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 49 of 67</p><p>Kaufman MP, Iwamoto GA, Ashton JH, Cassidy SS. 1982. Responses to inflation of vagal afferents with endings</p><p>in the lung of dogs. Circulation Research 51:525–531. DOI: https://doi.org/10.1161/01.res.51.4.525, PMID:</p><p>7127686</p><p>Kaur S, Pedersen NP, Yokota S, Hur EE, Fuller PM, Lazarus M, Chamberlin NL, Saper CB. 2013. Glutamatergic</p><p>signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. The Journal of Neuroscience</p><p>33:7627–7640. DOI: https://doi.org/10.1523/JNEUROSCI.0173-13.2013, PMID: 23637157</p><p>Kaur S, De Luca R, Khanday MA, Bandaru SS, Thomas RC, Broadhurst RY, Venner A, Todd WD, Fuller PM,</p><p>Arrigoni E, Saper CB. 2020. Role of serotonergic dorsal raphe neurons in hypercapnia- induced arousals. Nature</p><p>Communications 11:2769. DOI: https://doi.org/10.1038/s41467-020-16518-9, PMID: 32488015</p><p>Kawai Y. 2018. Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: an</p><p>interface between local microcircuits and global macrocircuits. Frontiers in Neuroanatomy 12:63. DOI: https://</p><p>doi.org/10.3389/fnana.2018.00063, PMID: 30087599</p><p>Kawashima T. 2018. The role of the serotonergic system in motor control. Neuroscience Research 129:32–39.</p><p>DOI: https://doi.org/10.1016/j.neures.2017.07.005, PMID: 28774814</p><p>Kc P, Haxhiu MA, Trouth CO, Balan KV, Anderson WA, Mack SO. 2002. Co (2) -induced c- fos expression in</p><p>hypothalamic vasopressin containing neurons. Respiration Physiology 129:289–296. DOI: https://doi.org/10.</p><p>1016/s0034-5687(01)00321-8, PMID: 11788132</p><p>Keay KA, Feil K, Gordon BD, Herbert H, Bandler R. 1997. Spinal afferents to functionally distinct periaqueductal</p><p>gray columns in the rat: an anterograde and retrograde tracing study. The Journal of Comparative Neurology</p><p>385:207–229. DOI: https://doi.org/10.1002/(sici)1096-9861(19970825)385:2<207::aid-cne3>3.0.co;2-5, PMID:</p><p>9268124</p><p>Kelly DH, Golub H, Carley D, Shannon DC. 1986. Pneumograms in infants who subsequently died of sudden</p><p>infant death syndrome. The Journal of Pediatrics 109:249–254. DOI: https://doi.org/10.1016/s0022-3476(86)</p><p>80380-8, PMID: 3755468</p><p>Kepecs A, Uchida N, Mainen ZF. 2006. The sniff as a unit of olfactory processing. Chemical Senses 31:167–179.</p><p>DOI: https://doi.org/10.1093/chemse/bjj016, PMID: 16339265</p><p>Khoshyomn S, Lew S, DeMattia J, Singer EB, Penar PL. 1999. Neuronal synchrony: a versatile code for the</p><p>definition of relations. Journal of Neuro- Oncology 45:111–116. DOI: https://doi.org/10.1023/A:</p><p>1006375316331</p><p>Kim AM, Keenan BT, Jackson N, Chan EL, Staley B, Poptani H, Torigian DA, Pack AI, Schwab RJ. 2014. Tongue</p><p>fat and its relationship to obstructive sleep apnea. Sleep 37:1639–1648. DOI: https://doi.org/10.5665/sleep.</p><p>4072, PMID: 25197815</p><p>Kim SH, Hadley SH, Maddison M, Patil M, Cha B, Kollarik M, Taylor- Clark TE. 2020. Mapping of sensory nerve</p><p>subsets within the vagal ganglia and the brainstem using reporter mice for pirt, TRPV1, 5- HT3, and tac1</p><p>expression. ENeuro 7:ENEURO.0494- 19.2020. DOI: https://doi.org/10.1523/ENEURO.0494-19.2020, PMID:</p><p>32060036</p><p>King TL, Heesch CM, Clark CG, Kline DD, Hasser EM. 2012. Hypoxia activates nucleus tractus solitarii neurons</p><p>projecting to the paraventricular nucleus of the hypothalamus. American Journal of Physiology. Regulatory,</p><p>Integrative and Comparative Physiology 302:R1219–R1232. DOI: https://doi.org/10.1152/ajpregu.00028.2012,</p><p>PMID: 22403798</p><p>Kinney HC, Thach BT. 2009. The sudden infant death syndrome. The New England Journal of Medicine</p><p>361:795–805. DOI: https://doi.org/10.1056/NEJMra0803836, PMID: 19692691</p><p>Kinney HC, Haynes RL. 2019. The serotonin brainstem hypothesis for the sudden infant death syndrome. Journal</p><p>of Neuropathology and Experimental Neurology 78:765–779. DOI: https://doi.org/10.1093/jnen/nlz062, PMID:</p><p>31397480</p><p>Kline DD, Buniel MCF, Glazebrook P, Peng Y- J, Ramirez- Navarro A, Prabhakar NR, Kunze DL. 2005. Kv1.1</p><p>deletion augments the afferent hypoxic chemosensory pathway and respiration. The Journal of Neuroscience</p><p>25:3389–3399. DOI: https://doi.org/10.1523/JNEUROSCI.4556-04.2005, PMID: 15800194</p><p>Klingbeil J, Wawrzyniak M, Stockert A, Brandt ML, Schneider HR, Metelmann M, Saur D. 2021. Pathological</p><p>laughter and crying: insights from lesion network- symptom- mapping. Brain 144:3264–3276. DOI: https://doi.</p><p>org/10.1093/brain/awab224, PMID: 34142117</p><p>Kluger DS, Gross J. 2021. Respiration modulates oscillatory neural network activity at rest. PLOS Biology</p><p>19:e3001457. DOI: https://doi.org/10.1371/journal.pbio.3001457, PMID: 34762645</p><p>Korpas J, Jakus J. 2000. The expiration reflex from the vocal folds. Acta Physiologica Hungarica 87:201–215.</p><p>DOI: https://doi.org/10.1556/APhysiol.87.2000.3.1, PMID: 11428747</p><p>Koshiya N, Oku Y, Yokota S, Oyamada Y, Yasui Y, Okada Y. 2014. Anatomical and functional pathways of</p><p>rhythmogenic inspiratory premotor information flow originating in the pre- Bötzinger complex in the rat</p><p>medulla. Neuroscience 268:194–211. DOI: https://doi.org/10.1016/j.neuroscience.2014.03.002, PMID:</p><p>24657775</p><p>Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. 2006. Central pathways of pulmonary and lower airway vagal</p><p>afferents. Journal of Applied Physiology 101:618–627. DOI: https://doi.org/10.1152/japplphysiol.00252.2006,</p><p>PMID: 16645192</p><p>Kubo T, Yanagihara Y, Yamaguchi H, Fukumori R. 1997. Excitatory amino acid receptors in the paraventricular</p><p>hypothalamic nucleus mediate pressor response induced by carotid body chemoreceptor stimulation in rats.</p><p>Clinical and Experimental Hypertension 19:1117–1134. DOI: https://doi.org/10.3109/10641969709083208,</p><p>PMID: 9310207</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1161/01.res.51.4.525</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7127686</p><p>https://doi.org/10.1523/JNEUROSCI.0173-13.2013</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23637157</p><p>https://doi.org/10.1038/s41467-020-16518-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32488015</p><p>https://doi.org/10.3389/fnana.2018.00063</p><p>https://doi.org/10.3389/fnana.2018.00063</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30087599</p><p>https://doi.org/10.1016/j.neures.2017.07.005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28774814</p><p>https://doi.org/10.1016/s0034-5687(01)00321-8</p><p>https://doi.org/10.1016/s0034-5687(01)00321-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11788132</p><p>https://doi.org/10.1002/(sici)1096-9861(19970825)385:2<207::aid-cne3>3.0.co;2-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9268124</p><p>https://doi.org/10.1016/s0022-3476(86)80380-8</p><p>https://doi.org/10.1016/s0022-3476(86)80380-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3755468</p><p>https://doi.org/10.1093/chemse/bjj016</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16339265</p><p>https://doi.org/10.1023/A:1006375316331</p><p>https://doi.org/10.1023/A:1006375316331</p><p>https://doi.org/10.5665/sleep.4072</p><p>https://doi.org/10.5665/sleep.4072</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25197815</p><p>https://doi.org/10.1523/ENEURO.0494-19.2020</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32060036</p><p>https://doi.org/10.1152/ajpregu.00028.2012</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22403798</p><p>https://doi.org/10.1056/NEJMra0803836</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19692691</p><p>https://doi.org/10.1093/jnen/nlz062</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31397480</p><p>https://doi.org/10.1523/JNEUROSCI.4556-04.2005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15800194</p><p>https://doi.org/10.1093/brain/awab224</p><p>https://doi.org/10.1093/brain/awab224</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34142117</p><p>https://doi.org/10.1371/journal.pbio.3001457</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34762645</p><p>https://doi.org/10.1556/APhysiol.87.2000.3.1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11428747</p><p>https://doi.org/10.1016/j.neuroscience.2014.03.002</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24657775</p><p>https://doi.org/10.1152/japplphysiol.00252.2006</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16645192</p><p>https://doi.org/10.3109/10641969709083208</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9310207</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 50 of 67</p><p>Kubo R, Aiba A, Hashimoto K. 2018. The anatomical pathway from the mesodiencephalic junction to the inferior</p><p>olive relays perioral sensory signals to the cerebellum in the mouse. The Journal of Physiology 596:3775–3791.</p><p>DOI: https://doi.org/10.1113/JP275836, PMID: 29874406</p><p>Kupari J, Häring M, Agirre E, Castelo- Branco G, Ernfors P. 2019. An atlas of vagal sensory neurons and their</p><p>molecular specialization. Cell Reports 27:2508–2523. DOI: https://doi.org/10.1016/j.celrep.2019.04.096, PMID:</p><p>31116992</p><p>Kurnikova A, Deschênes M, Kleinfeld D. 2019. Functional brain stem circuits for control of nose motion. Journal</p><p>of Neurophysiology 121:205–217. DOI: https://doi.org/10.1152/jn.00608.2018, PMID: 30461370</p><p>Laczika K, Graber OP, Tucek G, Lohninger A, Fliri N, Berka- Schmid G, Masel EK, Zielinski CC. 2013. “ IL flauto</p><p>magico ” still works: moza’t's secret of ventilation. Multidisciplinary Respiratory Medicine 8:23. DOI: https://</p><p>doi.org/10.1186/2049-6958-8-23, PMID: 23509946</p><p>Lalley PM. 1986. Serotoninergic and non- serotoninergic responses of phrenic motoneurones to raphe</p><p>stimulation in the cat. The Journal of Physiology 380:373–385. DOI: https://doi.org/10.1113/jphysiol.1986.</p><p>sp016291, PMID: 3612566</p><p>Lane MA, White TE, Coutts MA, Jones AL, Sandhu MS, Bloom DC, Bolser DC, Yates BJ, Fuller DD, Reier PJ.</p><p>2008. Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat. The Journal of</p><p>Comparative Neurology 511:692–709. DOI: https://doi.org/10.1002/cne.21864, PMID: 18924146</p><p>Lavezzi AM, Ottaviani G, Matturri L. 2007a. Ontogenesis of human cerebellar cortex and biopathological</p><p>characterization in sudden unexplained fetal and infant death. Virchows Archiv 450:31–40. DOI: https://doi.</p><p>org/10.1007/s00428-006-0311-5, PMID: 17334803</p><p>Lavezzi AM, Ottaviani G, Mauri M, Matturri L. 2007b. Biopathology of the dentate- olivary complex in sudden</p><p>unexplained perinatal death and sudden infant death syndrome related to maternal cigarette smoking.</p><p>Neurological Research 29:525–532. DOI: https://doi.org/10.1179/016164107X166308, PMID: 17535563</p><p>Lavezzi AM, Corna MF, Repetti ML, Matturri L. 2013. Cerebellar Purkinje cell vulnerability to prenatal nicotine</p><p>exposure in sudden unexplained perinatal death. Folia Neuropathologica 51:290–301. DOI: https://doi.org/10.</p><p>5114/fn.2013.39718, PMID: 24374957</p><p>Lebow MA, Chen A. 2016. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as</p><p>key to psychiatric disorders. Molecular Psychiatry 21:450–463. DOI: https://doi.org/10.1038/mp.2016.1, PMID:</p><p>26878891</p><p>Lee HS, Kim MA, Valentino RJ, Waterhouse BD. 2003. Glutamatergic afferent projections to the dorsal raphe</p><p>nucleus of the rat. Brain Research 963:57–71. DOI: https://doi.org/10.1016/s0006-8993(02)03841-6, PMID:</p><p>12560111</p><p>Lee HS, Park SH, Song WC, Waterhouse BD. 2005. Retrograde study of hypocretin- 1 (orexin- A) projections to</p><p>subdivisions of the dorsal raphe nucleus in the rat. Brain Research 1059:35–45. DOI: https://doi.org/10.1016/j.</p><p>brainres.2005.08.016, PMID: 16153616</p><p>Lee D, Artero EG, Sui X, Blair SN. 2010. Mortality trends in the general population: the importance of</p><p>cardiorespiratory fitness. Journal of Psychopharmacology24:27–35. DOI: https://doi.org/10.1177/</p><p>1359786810382057, PMID: 20923918</p><p>Lee A, Chen ML, Abeshaus S, Poliakov A, Ojemann JG. 2013. Posterior fossa tumors and their impact on sleep</p><p>and ventilatory control: a clinical perspective. Respiratory Physiology & Neurobiology 189:261–271. DOI:</p><p>https://doi.org/10.1016/j.resp.2013.05.027, PMID: 23727229</p><p>Lee LY, Yu J. 2014. Sensory nerves in lung and airways. Comprehensive Physiology 4:287–324. DOI: https://doi.</p><p>org/10.1002/cphy.c130020, PMID: 24692141</p><p>Lee J, Wang W, Sabatini BL. 2020. Anatomically segregated basal ganglia pathways allow parallel behavioral</p><p>modulation. Nature Neuroscience 23:1388–1398. DOI: https://doi.org/10.1038/s41593-020-00712-5, PMID:</p><p>32989293</p><p>Leirão IP, Colombari DSA, da Silva GSF, Zoccal DB. 2021. Lesion of serotonergic afferents to the retrotrapezoid</p><p>nucleus impairs the tachypneic response to hypercapnia in unanesthetized animals. Neuroscience 452:63–77.</p><p>DOI: https://doi.org/10.1016/j.neuroscience.2020.11.005, PMID: 33212216</p><p>Lesage F, Barhanin J. 2011. Molecular physiology of ph- sensitive background K (2P) channels. Physiology</p><p>26:424–437. DOI: https://doi.org/10.1152/physiol.00029.2011, PMID: 22170960</p><p>Li YQ, Takada M, Mizuno N. 1993. The sites of origin of serotoninergic afferent fibers in the trigeminal motor,</p><p>facial, and hypoglossal nuclei in the rat. Neuroscience Research 17:307–313. DOI: https://doi.org/10.1016/</p><p>0168-0102(93)90114-6, PMID: 8264992</p><p>Li N, Li A, Nattie E. 2013. Focal microdialysis of CO₂ in the perifornical- hypothalamic area increases ventilation</p><p>during wakefulness but not NREM sleep. Respiratory Physiology & Neurobiology 185:349–355. DOI: https://</p><p>doi.org/10.1016/j.resp.2012.09.007, PMID: 22999917</p><p>Li P, Janczewski WA, Yackle K, Kam K, Pagliardini S, Krasnow MA, Feldman JL. 2016. The peptidergic control</p><p>circuit for sighing. Nature 530:293–297. DOI: https://doi.org/10.1038/nature16964, PMID: 26855425</p><p>Li F, Jiang H, Shen X, Yang W, Guo C, Wang Z, Xiao M, Cui L, Luo W, Kim BS, Chen Z, Huang AJW, Liu Q. 2021.</p><p>Sneezing reflex is mediated by a peptidergic pathway from nose to brainstem. Cell 184:3762–3773. DOI:</p><p>https://doi.org/10.1016/j.cell.2021.05.017, PMID: 34133943</p><p>Lima JC, Oliveira LM, Botelho MT, Moreira TS, Takakura AC. 2018. The involvement of the pathway connecting</p><p>the substantia nigra, the periaqueductal gray matter and the retrotrapezoid nucleus in breathing control in a</p><p>rat model of parkinson’s disease. Experimental Neurology 302:46–56. DOI: https://doi.org/10.1016/j.</p><p>expneurol.2018.01.003, PMID: 29305892</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1113/JP275836</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29874406</p><p>https://doi.org/10.1016/j.celrep.2019.04.096</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31116992</p><p>https://doi.org/10.1152/jn.00608.2018</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30461370</p><p>https://doi.org/10.1186/2049-6958-8-23</p><p>https://doi.org/10.1186/2049-6958-8-23</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23509946</p><p>https://doi.org/10.1113/jphysiol.1986.sp016291</p><p>https://doi.org/10.1113/jphysiol.1986.sp016291</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3612566</p><p>https://doi.org/10.1002/cne.21864</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18924146</p><p>https://doi.org/10.1007/s00428-006-0311-5</p><p>https://doi.org/10.1007/s00428-006-0311-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17334803</p><p>https://doi.org/10.1179/016164107X166308</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17535563</p><p>https://doi.org/10.5114/fn.2013.39718</p><p>https://doi.org/10.5114/fn.2013.39718</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24374957</p><p>https://doi.org/10.1038/mp.2016.1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26878891</p><p>https://doi.org/10.1016/s0006-8993(02)03841-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12560111</p><p>https://doi.org/10.1016/j.brainres.2005.08.016</p><p>https://doi.org/10.1016/j.brainres.2005.08.016</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16153616</p><p>https://doi.org/10.1177/1359786810382057</p><p>https://doi.org/10.1177/1359786810382057</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20923918</p><p>https://doi.org/10.1016/j.resp.2013.05.027</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23727229</p><p>https://doi.org/10.1002/cphy.c130020</p><p>https://doi.org/10.1002/cphy.c130020</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24692141</p><p>https://doi.org/10.1038/s41593-020-00712-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32989293</p><p>https://doi.org/10.1016/j.neuroscience.2020.11.005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33212216</p><p>https://doi.org/10.1152/physiol.00029.2011</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22170960</p><p>https://doi.org/10.1016/0168-0102(93)90114-6</p><p>https://doi.org/10.1016/0168-0102(93)90114-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8264992</p><p>https://doi.org/10.1016/j.resp.2012.09.007</p><p>https://doi.org/10.1016/j.resp.2012.09.007</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22999917</p><p>https://doi.org/10.1038/nature16964</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26855425</p><p>https://doi.org/10.1016/j.cell.2021.05.017</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34133943</p><p>https://doi.org/10.1016/j.expneurol.2018.01.003</p><p>https://doi.org/10.1016/j.expneurol.2018.01.003</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29305892</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 51 of 67</p><p>Lima JD, Sobrinho CR, Santos LK, Takakura AC, Moreira TS. 2019a. M4- muscarinic acetylcholine receptor into</p><p>the pedunculopontine tegmental nucleus mediates respiratory modulation of conscious rats. Respiratory</p><p>Physiology & Neurobiology 269:103254. DOI: https://doi.org/10.1016/j.resp.2019.103254, PMID: 31325565</p><p>Lima JD, Sobrinho CR, Falquetto B, Santos LK, Takakura AC, Mulkey DK, Moreira TS. 2019b. Cholinergic neurons</p><p>in the pedunculopontine tegmental nucleus modulate breathing in rats by direct projections to the</p><p>retrotrapezoid nucleus. The Journal of Physiology 597:1919–1934. DOI: https://doi.org/10.1113/JP277617,</p><p>PMID: 30724347</p><p>Lindeman S, Hong S, Kros L, Mejias JF, Romano V, Oostenveld R, Negrello M, Bosman LWJ, De Zeeuw CI. 2021.</p><p>Cerebellar purkinje cells can differentially modulate coherence between sensory and motor cortex depending</p><p>on region and behavior. PNAS 118:e2015292118. DOI: https://doi.org/10.1073/pnas.2015292118, PMID:</p><p>33443203</p><p>Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. 2012. Neuroimaging of the periaqueductal gray:</p><p>state of the field. NeuroImage 60:505–522. DOI: https://doi.org/10.1016/j.neuroimage.2011.11.095, PMID:</p><p>22197740</p><p>Lippiello P, Hoxha E, Volpicelli F, Lo Duca G, Tempia F, Miniaci MC. 2015. Noradrenergic modulation of the</p><p>parallel fiber- Purkinje cell synapse in mouse cerebellum. Neuropharmacology 89:33–42. DOI: https://doi.org/</p><p>10.1016/j.neuropharm.2014.08.016, PMID: 25218865</p><p>Lipski J, Zhang X, Kruszewska B, Kanjhan R. 1994. Morphological study of long axonal projections of ventral</p><p>medullary inspiratory neurons in the rat. Brain Research 640:171–184. DOI: https://doi.org/10.1016/0006-8993(</p><p>94)91871-6, PMID: 8004446</p><p>Liu H, Mihailoff GA. 1999. Hypothalamopontine projections in the rat: anterograde axonal transport studies</p><p>utilizing light and electron microscopy. The Anatomical Record 255:428–451. DOI: https://doi.org/10.1002/(</p><p>SICI)1097-0185(19990801)255:4<428::AID-AR9>3.0.CO;2-S, PMID: 10409816</p><p>Liu Y, Qi S, Thomas F, Correia BL, Taylor AP, Sillitoe RV, Heck DH. 2020. Loss of cerebellar function selectively</p><p>affects intrinsic rhythmicity of eupneic breathing. Biology Open 9:bio048785. DOI: https://doi.org/10.1242/bio.</p><p>048785, PMID: 32086251</p><p>Liu N, Fu C, Yu H, Wang Y, Shi L, Hao Y, Yuan F, Zhang X, Wang S. 2021a. Respiratory control by phox2b-</p><p>expressing neurons in a locus coeruleus–prebötzinger complex circuit. Neuroscience Bulletin 37:31–44. DOI:</p><p>https://doi.org/10.1007/s12264-020-00519-1, PMID: 32468398</p><p>Liu J, Hu T, Zhang MQ, Xu CY, Yuan MY, Li RX. 2021b. Differential efferent projections of gabaergic neurons in</p><p>the basolateral and central nucleus of amygdala in mice. Neuroscience Letters 745:135621. DOI: https://doi.</p><p>org/10.1016/j.neulet.2020.135621, PMID: 33421491</p><p>Livingston CA, Berger AJ. 1989. Immunocytochemical localization of GABA in neurons projecting to the</p><p>ventrolateral nucleus of the solitary tract. Brain Research 494:143–150. DOI: https://doi.org/10.1016/0006-</p><p>8993(89)90153-4, PMID: 2765913</p><p>Livneh Y, Andermann ML. 2021. Cellular activity in insular cortex across seconds to hours: Sensations and</p><p>predictions of bodily states. Neuron 109:3576–3593. DOI: https://doi.org/10.1016/j.neuron.2021.08.036,</p><p>PMID: 34582784</p><p>Llinás R, Sugimori M. 1980. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian</p><p>cerebellar slices. The Journal of Physiology 305:197–213. DOI: https://doi.org/10.1113/jphysiol.1980.</p><p>sp013358, PMID: 7441553</p><p>Llinás RR. 1988. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous</p><p>system function. Science 242:1654–1664. DOI: https://doi.org/10.1126/science.3059497, PMID: 3059497</p><p>Loewy AD, Burton H. 1978. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal</p><p>cord of the cat. The Journal of Comparative Neurology 181:421–449. DOI: https://doi.org/10.1002/cne.</p><p>901810211, PMID: 690272</p><p>Lois JH, Rice CD, Yates BJ. 2009. Neural circuits controlling diaphragm function in the cat revealed by</p><p>transneuronal tracing. Journal of Applied Physiology 106:138–152. DOI: https://doi.org/10.1152/japplphysiol.</p><p>91125.2008, PMID: 18974365</p><p>LoMauro A, Aliverti A. 2021. Sex and gender in respiratory physiology. European Respiratory Review 30:210038.</p><p>DOI: https://doi.org/10.1183/16000617.0038-2021, PMID: 34750114</p><p>Lorenzi- Filho G, Rankin F, Bies I, Douglas Bradley T. 1999. Effects of inhaled carbon dioxide and oxygen on</p><p>cheyne- stokes respiration in patients with heart failure. American Journal of Respiratory and Critical Care</p><p>Medicine 159:1490–1498. DOI: https://doi.org/10.1164/ajrccm.159.5.9810040, PMID: 10228116</p><p>Loughlin SE, Foote SL, Bloom FE. 1986. Efferent projections of nucleus locus coeruleus: topographic</p><p>organization of cells of origin demonstrated by three- dimensional reconstruction. Neuroscience 18:291–306.</p><p>DOI: https://doi.org/10.1016/0306-4522(86)90155-7, PMID: 3736860</p><p>Lowe AA, Gionhaku N, Takeuchi K, Fleetham JA. 1986. Three- dimensional CT reconstructions of tongue and</p><p>airway in adult subjects with obstructive sleep apnea. American Journal of Orthodontics and Dentofacial</p><p>Orthopedics 90:364–374. DOI: https://doi.org/10.1016/0889-5406(86)90002-8, PMID: 3465231</p><p>Lu L, Cao Y, Tokita K, Heck DH, Boughter JD. 2013. Medial cerebellar nuclear projections and activity patterns</p><p>link cerebellar output to orofacial and respiratory behavior. Frontiers in Neural Circuits 7:56. DOI: https://doi.</p><p>org/10.3389/fncir.2013.00056, PMID: 23565078</p><p>Lu JH, Wang XQ, Huang Y, Qiu YH, Peng YP. 2015. GABAergic neurons in cerebellar interposed nucleus</p><p>modulate cellular and humoral immunity via hypothalamic and sympathetic pathways. Journal of</p><p>Neuroimmunology 283:30–38. DOI: https://doi.org/10.1016/j.jneuroim.2015.04.013, PMID: 26004153</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1016/j.resp.2019.103254</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31325565</p><p>https://doi.org/10.1113/JP277617</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30724347</p><p>https://doi.org/10.1073/pnas.2015292118</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33443203</p><p>https://doi.org/10.1016/j.neuroimage.2011.11.095</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22197740</p><p>https://doi.org/10.1016/j.neuropharm.2014.08.016</p><p>https://doi.org/10.1016/j.neuropharm.2014.08.016</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25218865</p><p>https://doi.org/10.1016/0006-8993(94)91871-6</p><p>https://doi.org/10.1016/0006-8993(94)91871-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8004446</p><p>https://doi.org/10.1002/(SICI)1097-0185(19990801)255:4<428::AID-AR9>3.0.CO;2-S</p><p>https://doi.org/10.1002/(SICI)1097-0185(19990801)255:4<428::AID-AR9>3.0.CO;2-S</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10409816</p><p>https://doi.org/10.1242/bio.048785</p><p>https://doi.org/10.1242/bio.048785</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32086251</p><p>https://doi.org/10.1007/s12264-020-00519-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32468398</p><p>https://doi.org/10.1016/j.neulet.2020.135621</p><p>https://doi.org/10.1016/j.neulet.2020.135621</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33421491</p><p>https://doi.org/10.1016/0006-8993(89)90153-4</p><p>https://doi.org/10.1016/0006-8993(89)90153-4</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2765913</p><p>https://doi.org/10.1016/j.neuron.2021.08.036</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34582784</p><p>https://doi.org/10.1113/jphysiol.1980.sp013358</p><p>https://doi.org/10.1113/jphysiol.1980.sp013358</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7441553</p><p>https://doi.org/10.1126/science.3059497</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3059497</p><p>https://doi.org/10.1002/cne.901810211</p><p>https://doi.org/10.1002/cne.901810211</p><p>http://www.ncbi.nlm.nih.gov/pubmed/690272</p><p>https://doi.org/10.1152/japplphysiol.91125.2008</p><p>https://doi.org/10.1152/japplphysiol.91125.2008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18974365</p><p>https://doi.org/10.1183/16000617.0038-2021</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34750114</p><p>https://doi.org/10.1164/ajrccm.159.5.9810040</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10228116</p><p>https://doi.org/10.1016/0306-4522(86)90155-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3736860</p><p>https://doi.org/10.1016/0889-5406(86)90002-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3465231</p><p>https://doi.org/10.3389/fncir.2013.00056</p><p>https://doi.org/10.3389/fncir.2013.00056</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23565078</p><p>https://doi.org/10.1016/j.jneuroim.2015.04.013</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26004153</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 52 of 67</p><p>Lu H, Yang B, Jaeger D. 2016. Cerebellar nuclei neurons show only small excitatory responses to optogenetic</p><p>olivary stimulation in transgenic mice: in vivo and in vitro studies. Frontiers in Neural Circuits 10:21. DOI:</p><p>https://doi.org/10.3389/fncir.2016.00021, PMID: 27047344</p><p>Lucier GE, Egizii R. 1986. Central projections of the ethmoidal nerve of the cat as determined by the horseradish</p><p>peroxidase tracer technique. The Journal of Comparative Neurology 247:123–132. DOI: https://doi.org/10.</p><p>1002/cne.902470108, PMID: 3711374</p><p>Ludlow CL. 2015. Laryngeal reflexes: physiology, technique, and clinical use. Journal of Clinical Neurophysiology</p><p>32:284–293. DOI: https://doi.org/10.1097/WNP.0000000000000187, PMID: 26241237</p><p>Lumsden T. 1923. Observations on the respiratory centres in the cat. The Journal of Physiology 57:153–160.</p><p>DOI: https://doi.org/10.1113/jphysiol.1923.sp002052, PMID: 16993609</p><p>Luppi PH, Aston- Jones G, Akaoka H, Chouvet G, Jouvet M. 1995. Afferent projections to the rat locus coeruleus</p><p>demonstrated by retrograde and anterograde tracing with cholera- toxin B subunit and phaseolus vulgaris</p><p>leucoagglutinin. Neuroscience 65:119–160. DOI: https://doi.org/10.1016/0306-4522(94)00481-j, PMID:</p><p>7753394</p><p>Luskin AT, Bhatti DL, Mulvey B, Pedersen CE, Girven KS, Oden- Brunson H, Kimbell K, Blackburn T, Sawyer A,</p><p>Gereau RW, Dougherty JD, Bruchas MR. 2021. Extended amygdala- parabrachial circuits alter threat assessment</p><p>and regulate feeding. Science Advances 7:eabd3666. DOI: https://doi.org/10.1126/sciadv.abd3666, PMID:</p><p>33637526</p><p>Lutherer LO, Williams JL. 1986. Stimulating fastigial nucleus pressor region elicits patterned respiratory</p><p>responses. The American Journal of Physiology 250:R418–R426. DOI: https://doi.org/10.1152/ajpregu.1986.</p><p>250.3.R418, PMID: 2869699</p><p>Lutherer LO, Williams JL, Everse SJ. 1989. Neurons of the rostral fastigial nucleus are responsive to</p><p>cardiovascular and respiratory challenges. Journal of the Autonomic Nervous System 27:101–111. DOI: https://</p><p>doi.org/10.1016/0165-1838(89)90092-1, PMID: 2778266</p><p>Mack SO, Kc P, Wu M, Coleman BR, Tolentino- Silva FP, Haxhiu MA. 2002. Paraventricular oxytocin neurons are</p><p>involved in neural modulation of breathing. Journal of Applied Physiology 92:826–834. DOI: https://doi.org/10.</p><p>1152/japplphysiol.00839.2001, PMID: 11796698</p><p>Mack SO, Wu M, Kc P, Haxhiu MA. 2007. Stimulation of the hypothalamic paraventricular nucleus modulates</p><p>cardiorespiratory responses via oxytocinergic innervation of neurons in pre- botzinger complex. Journal of</p><p>Applied Physiology 102:189–199. DOI: https://doi.org/10.1152/japplphysiol.00522.2006, PMID: 16857863</p><p>MacLarnon AM, Hewitt GP. 1999. The evolution of human speech: the role of enhanced breathing control.</p><p>American Journal of Physical Anthropology 109:341–363. DOI: https://doi.org/10.1002/(SICI)1096-8644(</p><p>199907)109:3<341::AID-AJPA5>3.0.CO;2-2, PMID: 10407464</p><p>Mador MJ, Tobin MJ. 1990. Apneustic breathing a characteristic feature of brainstem compression in</p><p>achondroplasia? Chest 97:877–883. DOI: https://doi.org/10.1378/chest.97.4.877, PMID: 2323256</p><p>Magoun HW, Atlas D, Ingersoll EH, Ranson SW. 1937. Associated facial, vocal and respiratory components of</p><p>emotional expression: an experimental study. The Journal of Neurology and Psychopathology 17:241–255.</p><p>DOI: https://doi.org/10.1136/jnnp.s1-17.67.241, PMID: 21623397</p><p>Mahler DA, Shuhart CR, Brew E, Stukel TA. 1991. Ventilatory responses and entrainment of breathing during</p><p>rowing. Medicine and Science in Sports and Exercise 23:186–192 PMID: 2017014.</p><p>Manabe M, Ezure K. 1988. Decrementing expiratory neurons of the bötzinger complex. I. response to lung</p><p>inflation and axonal projection. Experimental Brain Research 72:150–158. DOI: https://doi.org/10.1007/</p><p>BF00248510, PMID: 3169182</p><p>Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. 2007. Electrophysiological signatures of resting</p><p>state networks in the human brain. PNAS 104:13170–13175. DOI: https://doi.org/10.1073/pnas.0700668104,</p><p>PMID: 17670949</p><p>Marchenko V, Koizumi H, Mosher B, Koshiya N, Tariq MF, Bezdudnaya TG, Zhang R, Molkov YI, Rybak IA,</p><p>Smith JC. 2016. Perturbations of respiratory rhythm and pattern by disrupting synaptic inhibition within</p><p>pre- Bötzinger and Bötzinger complexes. ENeuro 3:eNeuro. DOI: https://doi.org/10.1523/ENEURO.0011-16.</p><p>2016, PMID: 27200412</p><p>Marckwald M. 1889. Werden de athembewegungen vom Rückenmarke beherrscht. Mitteilungen Der</p><p>Naturforschenden Gesellschaft Bern 1:59–74.</p><p>Marckwald M. 1890. Die bedeutung des mittelhirns für die athmung. Zeitschrift Fur Biologie 26:259–289.</p><p>Marina N, Abdala AP, Trapp S, Li A, Nattie EE, Hewinson J, Smith JC, Paton JFR, Gourine AV. 2010. Essential role</p><p>of phox2b- expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and</p><p>expiration. The Journal of Neuroscience 30:12466–12473. DOI: https://doi.org/10.1523/JNEUROSCI.3141-10.</p><p>2010, PMID: 20844141</p><p>Martino PF, Davis S, Opansky C, Krause K, Bonis JM, Pan LG, Qian B, Forster HV. 2007. The cerebellar fastigial</p><p>nucleus contributes to CO2- H+ ventilatory sensitivity in awake goats. Respiratory Physiology & Neurobiology</p><p>157:242–251. DOI: https://doi.org/10.1016/j.resp.2007.01.019, PMID: 17336598</p><p>Matarazzo V, Caccialupi L, Schaller F, Shvarev Y, Kourdougli N, Bertoni A, Menuet C, Voituron N, Deneris E,</p><p>Gaspar P, Bezin L, Durbec P, Hilaire G, Muscatelli F. 2017. Necdin shapes serotonergic development and SERT</p><p>activity modulating breathing in a mouse model for prader- willi syndrome. eLife 6:e32640. DOI: https://doi.</p><p>org/10.7554/eLife.32640, PMID: 29087295</p><p>Matschke J, Sperhake JP, Wilke N, Püschel K, Glatzel M. 2020. Cerebellar heterotopia of infancy in sudden infant</p><p>death syndrome: an observational neuropathological study of four cases. International Journal of Legal</p><p>Medicine 134:2143–2147. DOI: https://doi.org/10.1007/s00414-020-02316-x, PMID: 32435901</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.3389/fncir.2016.00021</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27047344</p><p>https://doi.org/10.1002/cne.902470108</p><p>https://doi.org/10.1002/cne.902470108</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3711374</p><p>https://doi.org/10.1097/WNP.0000000000000187</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26241237</p><p>https://doi.org/10.1113/jphysiol.1923.sp002052</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16993609</p><p>https://doi.org/10.1016/0306-4522(94)00481-j</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7753394</p><p>https://doi.org/10.1126/sciadv.abd3666</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33637526</p><p>https://doi.org/10.1152/ajpregu.1986.250.3.R418</p><p>https://doi.org/10.1152/ajpregu.1986.250.3.R418</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2869699</p><p>https://doi.org/10.1016/0165-1838(89)90092-1</p><p>https://doi.org/10.1016/0165-1838(89)90092-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2778266</p><p>https://doi.org/10.1152/japplphysiol.00839.2001</p><p>https://doi.org/10.1152/japplphysiol.00839.2001</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11796698</p><p>https://doi.org/10.1152/japplphysiol.00522.2006</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16857863</p><p>https://doi.org/10.1002/(SICI)1096-8644(199907)109:3<341::AID-AJPA5>3.0.CO;2-2</p><p>https://doi.org/10.1002/(SICI)1096-8644(199907)109:3<341::AID-AJPA5>3.0.CO;2-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10407464</p><p>https://doi.org/10.1378/chest.97.4.877</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2323256</p><p>https://doi.org/10.1136/jnnp.s1-17.67.241</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21623397</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2017014</p><p>https://doi.org/10.1007/BF00248510</p><p>https://doi.org/10.1007/BF00248510</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3169182</p><p>https://doi.org/10.1073/pnas.0700668104</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17670949</p><p>https://doi.org/10.1523/ENEURO.0011-16.2016</p><p>https://doi.org/10.1523/ENEURO.0011-16.2016</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27200412</p><p>https://doi.org/10.1523/JNEUROSCI.3141-10.2010</p><p>https://doi.org/10.1523/JNEUROSCI.3141-10.2010</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20844141</p><p>https://doi.org/10.1016/j.resp.2007.01.019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17336598</p><p>https://doi.org/10.7554/eLife.32640</p><p>https://doi.org/10.7554/eLife.32640</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29087295</p><p>https://doi.org/10.1007/s00414-020-02316-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32435901</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 53 of 67</p><p>Matsushita M, Hosoya Y, Ikeda M. 1979. Anatomical organization of the spinocerebellar system in the cat, as</p><p>studied by retrograde transport of horseradish peroxidase. The Journal of Comparative Neurology 184:81–</p><p>106. DOI: https://doi.org/10.1002/cne.901840106, PMID: 84004</p><p>Mazzone SB, Reynolds SM, Mori N, Kollarik M, Farmer DG, Myers AC, Canning BJ. 2009. Selective expression of</p><p>a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough. The Journal</p><p>of Neuroscience 29:13662–13671. DOI: https://doi.org/10.1523/JNEUROSCI.4354-08.2009, PMID: 19864578</p><p>Mazzone SB, Undem BJ. 2016. Vagal afferent innervation of the airways in health and disease. Physiological</p><p>Reviews 96:975–1024. DOI: https://doi.org/10.1152/physrev.00039.2015, PMID: 27279650</p><p>Mazzone SB, Bautista TG, Verberne AJM, Trewella MW, Farrell MJ, McGovern AE. 2020. Descending modulation</p><p>of laryngeal vagal sensory processing in the brainstem orchestrated by the submedius thalamic nucleus. The</p><p>Journal of Neuroscience 40:9426–9439. DOI: https://doi.org/10.1523/JNEUROSCI.2430-20.2020, PMID:</p><p>33115928</p><p>McAllen RM, Spyer KM. 1976. The location of cardiac vagal preganglionic motoneurones in the medulla of the</p><p>cat. The Journal of Physiology 258:187–204. DOI: https://doi.org/10.1113/jphysiol.1976.sp011414, PMID:</p><p>940054</p><p>McDevitt RA, Tiran- Cappello A, Shen H, Balderas I, Britt JP, Marino RAM, Chung SL, Richie CT, Harvey BK,</p><p>Bonci A. 2014. Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation</p><p>in reward circuitry. Cell Reports 8:1857–1869. DOI: https://doi.org/10.1016/j.celrep.2014.08.037, PMID:</p><p>25242321</p><p>McFarland DH, Lund JP. 1993. An investigation of the coupling between respiration, mastication, and swallowing</p><p>in the awake rabbit. Journal of Neurophysiology 69:95–108. DOI: https://doi.org/10.1152/jn.1993.69.1.95,</p><p>PMID: 8433136</p><p>McGovern AE, Davis- Poynter N, Yang SK, Simmons DG, Farrell MJ, Mazzone SB. 2015a. Evidence for multiple</p><p>sensory circuits in the brain arising from the respiratory system: an anterograde viral tract tracing study in</p><p>rodents. Brain Structure & Function 220:3683–3699. DOI: https://doi.org/10.1007/s00429-014-0883-9, PMID:</p><p>25158901</p><p>McGovern AE, Driessen AK, Simmons DG, Powell J, Davis- Poynter N, Farrell MJ, Mazzone SB. 2015b. Distinct</p><p>brainstem and forebrain circuits receiving tracheal sensory neuron inputs revealed using a novel conditional</p><p>anterograde transsynaptic viral tracing system. Journal of Neuroscience 35:7041–7055. DOI: https://doi.org/</p><p>10.1523/JNEUROSCI.5128-14.2015, PMID: 25948256</p><p>McKay LC, Adams L, Frackowiak RSJ, Corfield DR. 2008. A bilateral cortico- bulbar network associated with</p><p>breath holding in humans, determined by functional magnetic resonance imaging. NeuroImage 40:1824–1832.</p><p>DOI: https://doi.org/10.1016/j.neuroimage.2008.01.058, PMID: 18343687</p><p>McKay LC, Critchley HD, Murphy K, Frackowiak RSJ, Corfield DR. 2010. Sub- cortical and brainstem sites</p><p>associated with chemo- stimulated increases in ventilation in humans. NeuroImage 49:2526–2535. DOI: https://</p><p>doi.org/10.1016/j.neuroimage.2009.11.007, PMID: 19913627</p><p>Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI, Dale N. 2013. CO₂directly modulates connexin 26 by</p><p>formation of carbamate bridges between subunits. eLife 2:e01213. DOI: https://doi.org/10.7554/eLife.01213,</p><p>PMID: 24220509</p><p>Melnychuk MC, Robertson IH, Plini ERG, Dockree PM. 2021. A bridge between the breath and the brain:</p><p>synchronization of respiration, A pupillometric marker of the locus coeruleus, and an EEG marker of attentional</p><p>control state. Brain Sciences 11:1324. DOI: https://doi.org/10.3390/brainsci11101324, PMID: 34679389</p><p>Mena- Segovia J, Bolam JP. 2017. Rethinking the pedunculopontine nucleus: from cellular organization to</p><p>function. Neuron 94:7–18. DOI: https://doi.org/10.1016/j.neuron.2017.02.027, PMID: 28384477</p><p>Menétrey D, Leah J, de Pommery J. 1987. Efferent projections of the paratrigeminal nucleus in the rat.</p><p>Neuroscience Letters 73:48–52. DOI: https://doi.org/10.1016/0304-3940(87)90029-2, PMID: 2436098</p><p>Merrill EG. 1970. The lateral respiratory neurones of the medulla: their associations with nucleus ambiguus,</p><p>nucleus retroambigualis, the spinal accessory nucleus and the spinal cord. Brain Research 24:11–28. DOI:</p><p>https://doi.org/10.1016/0006-8993(70)90271-4, PMID: 5503233</p><p>Merrill EG, Lipski J, Kubin L, Fedorko L. 1983. Origin of the expiratory inhibition of nucleus tractus solitarius</p><p>inspiratory neurones. Brain Research 263:43–50. DOI: https://doi.org/10.1016/0006-8993(83)91198-8, PMID:</p><p>6301644</p><p>Merrill EG, Fedorko L. 1984. Monosynaptic inhibition of phrenic motoneurons: a long descending projection</p><p>from Bötzinger neurons. The Journal of Neuroscience 4:2350–2353. DOI: https://doi.org/10.1523/JNEUROSCI.</p><p>04-09-02350.1984, PMID: 6090616</p><p>Meuret AE, Kroll J, Ritz T. 2017. Panic disorder comorbidity with medical conditions and treatment implications.</p><p>Annual Review of Clinical Psychology 13:209–240. DOI: https://doi.org/10.1146/annurev-clinpsy-021815-</p><p>093044, PMID: 28375724</p><p>Miescher- Rüsch F. 1885. Bemerkungen zur lehre von den athembewegungen. Arch Anat Physiol 355:355–380.</p><p>Mifflin SW. 1992. Arterial chemoreceptor input to nucleus tractus solitarius. The American Journal of Physiology</p><p>263:R368–R375. DOI: https://doi.org/10.1152/ajpregu.1992.263.2.R368, PMID: 1510176</p><p>Mihailoff GA, Kosinski RJ, Azizi SA, Border BG. 1989. Survey of noncortical afferent projections to the basilar</p><p>pontine nuclei: a retrograde tracing study in the rat. The Journal of Comparative Neurology 282:617–643. DOI:</p><p>https://doi.org/10.1002/cne.902820411, PMID: 2723155</p><p>Mileykovskiy BY, Kiyashchenko LI, Siegel JM. 2005. Behavioral correlates of activity in identified hypocretin/</p><p>orexin neurons. Neuron 46:787–798.</p><p>DOI: https://doi.org/10.1016/j.neuron.2005.04.035, PMID: 15924864</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1002/cne.901840106</p><p>http://www.ncbi.nlm.nih.gov/pubmed/84004</p><p>https://doi.org/10.1523/JNEUROSCI.4354-08.2009</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19864578</p><p>https://doi.org/10.1152/physrev.00039.2015</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27279650</p><p>https://doi.org/10.1523/JNEUROSCI.2430-20.2020</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33115928</p><p>https://doi.org/10.1113/jphysiol.1976.sp011414</p><p>http://www.ncbi.nlm.nih.gov/pubmed/940054</p><p>https://doi.org/10.1016/j.celrep.2014.08.037</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25242321</p><p>https://doi.org/10.1152/jn.1993.69.1.95</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8433136</p><p>https://doi.org/10.1007/s00429-014-0883-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25158901</p><p>https://doi.org/10.1523/JNEUROSCI.5128-14.2015</p><p>https://doi.org/10.1523/JNEUROSCI.5128-14.2015</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25948256</p><p>https://doi.org/10.1016/j.neuroimage.2008.01.058</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18343687</p><p>https://doi.org/10.1016/j.neuroimage.2009.11.007</p><p>https://doi.org/10.1016/j.neuroimage.2009.11.007</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19913627</p><p>https://doi.org/10.7554/eLife.01213</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24220509</p><p>https://doi.org/10.3390/brainsci11101324</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34679389</p><p>https://doi.org/10.1016/j.neuron.2017.02.027</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28384477</p><p>https://doi.org/10.1016/0304-3940(87)90029-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2436098</p><p>https://doi.org/10.1016/0006-8993(70)90271-4</p><p>http://www.ncbi.nlm.nih.gov/pubmed/5503233</p><p>https://doi.org/10.1016/0006-8993(83)91198-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6301644</p><p>https://doi.org/10.1523/JNEUROSCI.04-09-02350.1984</p><p>https://doi.org/10.1523/JNEUROSCI.04-09-02350.1984</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6090616</p><p>https://doi.org/10.1146/annurev-clinpsy-021815-093044</p><p>https://doi.org/10.1146/annurev-clinpsy-021815-093044</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28375724</p><p>https://doi.org/10.1152/ajpregu.1992.263.2.R368</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1510176</p><p>https://doi.org/10.1002/cne.902820411</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2723155</p><p>https://doi.org/10.1016/j.neuron.2005.04.035</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15924864</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 54 of 67</p><p>Miller JR, Zuperku EJ, Stuth EAE, Banerjee A, Hopp FA, Stucke AG. 2017. A subregion of the parabrachial</p><p>nucleus partially mediates respiratory rate depression from intravenous remifentanil in young and adult rabbits.</p><p>Anesthesiology 127:502–514. DOI: https://doi.org/10.1097/ALN.0000000000001719, PMID: 28590302</p><p>Milsom WK, Burleson ML. 2007. Peripheral arterial chemoreceptors and the evolution of the carotid body.</p><p>Respiratory Physiology & Neurobiology 157:4–11. DOI: https://doi.org/10.1016/j.resp.2007.02.007, PMID:</p><p>17353155</p><p>Miura M, Reis DJ. 1969. Cerebellum: a pressor response elicited from the fastigial nucleus and its efferent</p><p>pathway in brainstem. Brain Research 13:595–599. DOI: https://doi.org/10.1016/0006-8993(69)90269-8, PMID:</p><p>5772438</p><p>Miura M, Reis DJ. 1972. The role of the solitary and paramedian reticular nuclei in mediating cardiovascular</p><p>reflex responses from carotid baro- and chemoreceptors. The Journal of Physiology 223:525–548. DOI: https://</p><p>doi.org/10.1113/jphysiol.1972.sp009861, PMID: 5039285</p><p>Miura M, Takayama K. 1988. The site of the origin of the so- called fastigial pressor response. Brain Research</p><p>473:352–358. DOI: https://doi.org/10.1016/0006-8993(88)90865-7, PMID: 2466526</p><p>Miyazaki M, Tanaka I, Ezure K. 1999. Excitatory and inhibitory synaptic inputs shape the discharge pattern of</p><p>pump neurons of the nucleus tractus solitarii in the rat. Experimental Brain Research 129:191–200. DOI:</p><p>https://doi.org/10.1007/s002210050889, PMID: 10591893</p><p>Moga MM, Herbert H, Hurley KM, Yasui Y, Gray TS, Saper CB. 1990. Organization of cortical, basal forebrain,</p><p>and hypothalamic afferents to the parabrachial nucleus in the rat. The Journal of Comparative Neurology</p><p>295:624–661. DOI: https://doi.org/10.1002/cne.902950408, PMID: 1694187</p><p>Molinari HH, Schultze KE, Strominger NL. 1996. Gracile, cuneate, and spinal trigeminal projections to inferior</p><p>olive in rat and monkey. The Journal of Comparative Neurology 375:467–480. DOI: https://doi.org/10.1002/(</p><p>SICI)1096-9861(19961118)375:3<467::AID-CNE9>3.0.CO;2-0, PMID: 8915843</p><p>Mong FSF, Chen YC, Lu CH. 1988. Dendritic ramifications of trigeminal motor neurons innervating jaw- closing</p><p>muscles of rats. Journal of the Neurological Sciences 86:251–264. DOI: https://doi.org/10.1016/0022-510x(88)</p><p>90103-7, PMID: 2464667</p><p>Moolenaar GM, Rucker HK. 1976. Autoradiographic study of brain stem projections from fastigal pressor areas.</p><p>Brain Research 114:492–496. DOI: https://doi.org/10.1016/0006-8993(76)90970-7, PMID: 953770</p><p>Moore DB, Madorsky I, Paiva M, Barrow Heaton M. 2004. Ethanol exposure alters neurotrophin receptor</p><p>expression in the rat central nervous system: effects of prenatal exposure. Journal of Neurobiology 60:101–</p><p>113. DOI: https://doi.org/10.1002/neu.20009, PMID: 15188276</p><p>Moore JD, Deschênes M, Furuta T, Huber D, Smear MC, Demers M, Kleinfeld D. 2013. Hierarchy of orofacial</p><p>rhythms revealed through whisking and breathing. Nature 497:205–210. DOI: https://doi.org/10.1038/</p><p>nature12076, PMID: 23624373</p><p>Moore JD, Kleinfeld D, Wang F. 2014. How the brainstem controls orofacial behaviors comprised of rhythmic</p><p>actions. Trends in Neurosciences 37:370–380. DOI: https://doi.org/10.1016/j.tins.2014.05.001, PMID:</p><p>24890196</p><p>Morice AH, Millqvist E, Bieksiene K, Birring SS, Dicpinigaitis P, Domingo Ribas C, Hilton Boon M, Kantar A, Lai K,</p><p>McGarvey L, Rigau D, Satia I, Smith J, Song WJ, Tonia T, van den Berg JWK, van Manen MJG,</p><p>Zacharasiewicz A. 2020. ERS guidelines on the diagnosis and treatment of chronic cough in adults and children.</p><p>European Respiratory Journal 55:1901136. DOI: https://doi.org/10.1183/13993003.01136-2019, PMID:</p><p>31515408</p><p>Morris KF, Nuding SC, Segers LS, Iceman KE, O’Connor R, Dean JB, Ott MM, Alencar PA, Shuman D,</p><p>Horton KK, Taylor- Clark TE, Bolser DC, Lindsey BG. 2018. Carotid chemoreceptors tune breathing via multipath</p><p>routing: reticular chain and loop operations supported by parallel spike train correlations. Journal of</p><p>Neurophysiology 119:700–722. DOI: https://doi.org/10.1152/jn.00630.2017, PMID: 29046425</p><p>Mortola J, Sant’Ambrogio G, Clement MG. 1975. Localization of irritant receptors in the airways of the dog.</p><p>Respiration Physiology 24:107–114. DOI: https://doi.org/10.1016/0034-5687(75)90125-5, PMID: 1197943</p><p>Mortola JP. 2013. Lung viscoelasticity: implications on breathing and forced expiration. Clinical Pulmonary</p><p>Medicine 20:144–148. DOI: https://doi.org/10.1097/CPM.0b013e31828fc9d6</p><p>Motta SC, Carobrez AP, Canteras NS. 2017. The periaqueductal gray and primal emotional processing critical to</p><p>influence complex defensive responses, fear learning and reward seeking. Neuroscience and Biobehavioral</p><p>Reviews 76:39–47. DOI: https://doi.org/10.1016/j.neubiorev.2016.10.012, PMID: 28434586</p><p>Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG. 2004. Respiratory control</p><p>by ventral surface chemoreceptor neurons in rats. Nature Neuroscience 7:1360–1369. DOI: https://doi.org/10.</p><p>1038/nn1357, PMID: 15558061</p><p>Mutolo D. 2017. Brainstem mechanisms underlying the cough reflex and its regulation. Respiratory Physiology &</p><p>Neurobiology 243:60–76. DOI: https://doi.org/10.1016/j.resp.2017.05.008, PMID: 28549898</p><p>Nagai T, Satoh K, Imamoto K, Maeda T. 1981. Divergent projections of catecholamine neurons of the locus</p><p>coeruleus as revealed by fluorescent retrograde double labeling technique. Neuroscience Letters 23:117–123.</p><p>DOI: https://doi.org/10.1016/0304-3940(81)90027-6, PMID: 7254696</p><p>Nakayama K, Niwa M, Sasaki SI, Ichikawa T, Hirai N. 1998. Morphology of single primary spindle afferents of the</p><p>intercostal muscles in the cat. The Journal of Comparative Neurology 398:459–472.</p><p>DOI: https://doi.org/10.</p><p>1002/(SICI)1096-9861(19980907)398:4<459::AID-CNE1>3.0.CO;2-1, PMID: 9717703</p><p>Nattie E. 1999. CO2, brainstem chemoreceptors and breathing. Progress in Neurobiology 59:299–331. DOI:</p><p>https://doi.org/10.1016/S0301-0082(99)00008-8, PMID: 10501632</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1097/ALN.0000000000001719</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28590302</p><p>https://doi.org/10.1016/j.resp.2007.02.007</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17353155</p><p>https://doi.org/10.1016/0006-8993(69)90269-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/5772438</p><p>https://doi.org/10.1113/jphysiol.1972.sp009861</p><p>https://doi.org/10.1113/jphysiol.1972.sp009861</p><p>http://www.ncbi.nlm.nih.gov/pubmed/5039285</p><p>https://doi.org/10.1016/0006-8993(88)90865-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2466526</p><p>https://doi.org/10.1007/s002210050889</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10591893</p><p>https://doi.org/10.1002/cne.902950408</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1694187</p><p>https://doi.org/10.1002/(SICI)1096-9861(19961118)375:3<467::AID-CNE9>3.0.CO;2-0</p><p>https://doi.org/10.1002/(SICI)1096-9861(19961118)375:3<467::AID-CNE9>3.0.CO;2-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8915843</p><p>https://doi.org/10.1016/0022-510x(88)90103-7</p><p>https://doi.org/10.1016/0022-510x(88)90103-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2464667</p><p>https://doi.org/10.1016/0006-8993(76)90970-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/953770</p><p>https://doi.org/10.1002/neu.20009</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15188276</p><p>https://doi.org/10.1038/nature12076</p><p>https://doi.org/10.1038/nature12076</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23624373</p><p>https://doi.org/10.1016/j.tins.2014.05.001</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24890196</p><p>https://doi.org/10.1183/13993003.01136-2019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31515408</p><p>https://doi.org/10.1152/jn.00630.2017</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29046425</p><p>https://doi.org/10.1016/0034-5687(75)90125-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1197943</p><p>https://doi.org/10.1097/CPM.0b013e31828fc9d6</p><p>https://doi.org/10.1016/j.neubiorev.2016.10.012</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28434586</p><p>https://doi.org/10.1038/nn1357</p><p>https://doi.org/10.1038/nn1357</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15558061</p><p>https://doi.org/10.1016/j.resp.2017.05.008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28549898</p><p>https://doi.org/10.1016/0304-3940(81)90027-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7254696</p><p>https://doi.org/10.1002/(SICI)1096-9861(19980907)398:4<459::AID-CNE1>3.0.CO;2-1</p><p>https://doi.org/10.1002/(SICI)1096-9861(19980907)398:4<459::AID-CNE1>3.0.CO;2-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9717703</p><p>https://doi.org/10.1016/S0301-0082(99)00008-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10501632</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 55 of 67</p><p>Nattie EE, Li A. 2002. CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and</p><p>wakefulness. Journal of Applied Physiology 92:2119–2130. DOI: https://doi.org/10.1152/japplphysiol.01128.</p><p>2001, PMID: 11960965</p><p>Nattie E, Li A. 2008. Muscimol dialysis into the caudal aspect of the nucleus tractus solitarii of conscious rats</p><p>inhibits chemoreception. Respiratory Physiology & Neurobiology 164:394–400. DOI: https://doi.org/10.1016/j.</p><p>resp.2008.09.004, PMID: 18824146</p><p>Navarrete- Opazo AA, Cook- Snyder DR, Miller JR, Callison JJ, McCarthy N, Palkovic B, Stuth EAE, Zuperku EJ,</p><p>Stucke AG. 2020. Endogenous glutamatergic inputs to the parabrachial nucleus/kölliker- fuse complex</p><p>determine respiratory rate. Respiratory Physiology & Neurobiology 277:103401. DOI: https://doi.org/10.1016/</p><p>j.resp.2020.103401, PMID: 32036030</p><p>Neff RA, Wang J, Baxi S, Evans C, Mendelowitz D. 2003. Respiratory sinus arrhythmia: endogenous activation of</p><p>nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons.</p><p>Circulation Research 93:565–572. DOI: https://doi.org/10.1161/01.RES.0000090361.45027.5B, PMID:</p><p>12907666</p><p>Negrello M, Warnaar P, Romano V, Owens CB, Lindeman S, Iavarone E, Spanke JK, Bosman LWJ, De Zeeuw CI.</p><p>2019. Quasiperiodic rhythms of the inferior olive. PLOS Computational Biology 15:e1006475. DOI: https://doi.</p><p>org/10.1371/journal.pcbi.1006475, PMID: 31059498</p><p>Ni RJ, Luo PH, Shu YM, Chen JT, Zhou JN. 2016. Whole- brain mapping of afferent projections to the bed</p><p>nucleus of the stria terminalis in tree shrews. Neuroscience 333:162–180. DOI: https://doi.org/10.1016/j.</p><p>neuroscience.2016.07.017, PMID: 27436534</p><p>Nijjar S, Maddison D, Meigh L, de Wolf E, Rodgers T, Cann MJ, Dale N. 2021. Opposing modulation of cx26 gap</p><p>junctions and hemichannels by CO2. The Journal of Physiology 599:103–118. DOI: https://doi.org/10.1113/</p><p>JP280747, PMID: 33022747</p><p>Nisimaru N. 2004. Cardiovascular modules in the cerebellum. The Japanese Journal of Physiology 54:431–448.</p><p>DOI: https://doi.org/10.2170/jjphysiol.54.431, PMID: 15667667</p><p>Nobis WP, Schuele S, Templer JW, Zhou G, Lane G, Rosenow JM, Zelano C. 2018. Amygdala- stimulation-</p><p>induced apnea is attention and nasal- breathing dependent. Annals of Neurology 83:460–471. DOI: https://doi.</p><p>org/10.1002/ana.25178, PMID: 29420859</p><p>Nobis WP, González Otárula KA, Templer JW, Gerard EE, VanHaerents S, Lane G, Zhou G, Rosenow JM,</p><p>Zelano C, Schuele S. 2019. The effect of seizure spread to the amygdala on respiration and onset of ictal</p><p>central apnea. Journal of Neurosurgery 132:1313–1323. DOI: https://doi.org/10.3171/2019.1.JNS183157,</p><p>PMID: 30952127</p><p>Nonaka S, Unno T, Ohta Y, Mori S. 1990. Sneeze- evoking region within the brainstem. Brain Research 511:265–</p><p>270. DOI: https://doi.org/10.1016/0006-8993(90)90171-7, PMID: 2139800</p><p>Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, Ranade SS, Liberles SD, Patapoutian A. 2017.</p><p>Piezo2 senses airway stretch and mediates lung inflation- induced apnoea. Nature 541:176–181. DOI: https://</p><p>doi.org/10.1038/nature20793, PMID: 28002412</p><p>Norgren R. 1978. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3:207–218. DOI:</p><p>https://doi.org/10.1016/0306-4522(78)90102-1, PMID: 733004</p><p>Novello M, Bosman LWJ, De Zeeuw CI. 2022. A systematic review of direct outputs from the cerebellum to the</p><p>brainstem and diencephalon in mammals. Cerebellum 1:01499- w. DOI: https://doi.org/10.1007/s12311-022-</p><p>01499-w, PMID: 36575348</p><p>Núñez- Abades PA, Portillo F, Pásaro R. 1990. Characterisation of afferent projections to the nucleus ambiguus of</p><p>the rat by means of fluorescent double labelling. Journal of Anatomy 172:1–15 PMID: 2272895.</p><p>O’Donnell CP, Tankersley CG, Polotsky VP, Schwartz AR, Smith PL. 2000. Leptin, obesity, and respiratory</p><p>function. Respiration Physiology 119:163–170. DOI: https://doi.org/10.1016/s0034-5687(99)00111-5, PMID:</p><p>10722859</p><p>Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe- Uchida M. 2014. Organization of monosynaptic inputs to the</p><p>serotonin and dopamine neuromodulatory systems. Cell Reports 8:1105–1118. DOI: https://doi.org/10.1016/j.</p><p>celrep.2014.06.042, PMID: 25108805</p><p>Ohtsuki G, Piochon C, Hansel C. 2009. Climbing fiber signaling and cerebellar gain control. Frontiers in Cellular</p><p>Neuroscience 3:4. DOI: https://doi.org/10.3389/neuro.03.004.2009, PMID: 19597563</p><p>Oka T, Tsumori T, Yokota S, Yasui Y. 2008. Neuroanatomical and neurochemical organization of projections from</p><p>the central amygdaloid nucleus to the nucleus retroambiguus via the periaqueductal gray in the rat.</p><p>Neuroscience Research 62:286–298. DOI: https://doi.org/10.1016/j.neures.2008.10.004, PMID: 18948150</p><p>Oku Y, Masumiya H, Okada Y. 2007. Postnatal developmental changes in activation profiles of the respiratory</p><p>neuronal network in the rat ventral medulla. The Journal of Physiology 585:175–186. DOI: https://doi.org/10.</p><p>1113/jphysiol.2007.138180, PMID: 17884928</p><p>Oliveira LM, Takakura AC, Moreira TS. 2021. Forebrain and hindbrain projecting- neurons target the post-</p><p>inspiratory complex cholinergic neurons. Neuroscience 476:102–115. DOI: https://doi.org/10.1016/j.</p><p>neuroscience.2021.09.015, PMID: 34582982</p><p>Olson L, Fuxe K. 1971. On the projections from the locus</p><p>reflect sensory</p><p>feedback: while augmenting neurons are inhibited by lung inflation, decrementing neurons are excited</p><p>by it (Manabe and Ezure, 1988; Hayashi etal., 1996). Next to the adjacent pre- Bötzinger complex,</p><p>also other respiratory control centers are innervated by the Bötzinger complex: the Kölliker- Fuse and</p><p>lateral parafacial nuclei (Ezure etal., 2003; Yang etal., 2020; Biancardi etal., 2021).</p><p>The Bötzinger complex also inhibits premotor areas: rVRG and to a lesser extent also cVRG (Jiang</p><p>and Lipski, 1990; Bryant etal., 1993; Ezure, 2004), and directly inhibits motor neurons in the phrenic</p><p>nucleus (Merrill and Fedorko, 1984; Ellenberger etal., 1990b; Tian etal., 1998). Other targets are</p><p>the NTS, lateral parabrachial nucleus and periaqueductal gray (Merrill etal., 1983; Fedorko and</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 7 of 67</p><p>Merrill, 1984; Livingston and Berger, 1989; Smith etal., 1989; Ezure etal., 2003; Trevizan- Baú</p><p>etal., 2021b).</p><p>As the respiratory pattern has to be coordinated with ongoing behavior, the pre- Bötzinger complex</p><p>receives input from many brain regions, like the Kölliker- Fuse nucleus, PiCo, cVRG, NTS, retrotrape-</p><p>zoid nucleus, locus coeruleus, caudal raphe, lateral and paraventricular hypothalamus, central amyg-</p><p>dala, lateral and medial parabrachial nuclei, periaqueductal gray, spinal trigeminal nuclei, and reticular</p><p>formation (Panneton etal., 2006; Rosin etal., 2006; Jones etal., 2016; Hennessy etal., 2017;</p><p>Yang etal., 2020; Liu etal., 2021b; Trevizan- Baú etal., 2021b). The pre- Bötzinger complex receives</p><p>also direct input from the forebrain, including several regions of the neocortex presumably involved in</p><p>voluntary control of respiration, but these connections are relatively sparse (Yang etal., 2020; Trevi-</p><p>zan- Baú etal., 2021a). The inputs of the Bötzinger complex are similar to those of the pre- Bötzinger</p><p>complex, although less widespread (Gang etal., 1995; Supplementary file 1).</p><p>Kölliker-Fuse nucleus</p><p>The pre- Bötzinger complex is not the only area essential for rhythmic respiration. Selective damage</p><p>to the brainstem at the level of the pons leads to impaired transition from inspiration to expira-</p><p>tion, resulting in prolonged periods of inspiration, a condition called apneusis (Marckwald, 1890;</p><p>Lumsden, 1923). This effect was later localized in parts of the parabrachial complex, initially referred</p><p>to as pneumotaxic center, and later as the pontine respiratory group (Cohen and Wang, 1959; Caille</p><p>et al., 1981; Ezure and Tanaka, 2006; Zuperku et al., 2017; Varga et al., 2021). The parabra-</p><p>chial complex is composed of the lateral and medial parabrachial nuclei, that have predominantly</p><p>ascending projections carrying sensory information, and the Kölliker- Fuse nucleus that primarily</p><p>targets subcortical structures (Fulwiler and Saper, 1984). Accordingly, of the parabrachial complex</p><p>it is mainly the Kölliker- Fuse nucleus that influences the switch from inspiration to expiration (Dama-</p><p>sceno etal., 2014; Dutschmann etal., 2021; Figure3B). Neurons of the Kölliker- Fuse nucleus show</p><p>activity related to specific phases of respiration, with most neurons being active during inspiration;</p><p>these latter neurons abruptly stop firing at the end of inspiration, marking the inspiration- expiration</p><p>transition (Dick etal., 1994; Ezure and Tanaka, 2006; Dutschmann etal., 2021). A bilateral block of</p><p>activity in the Kölliker- Fuse nucleus prolonged the inspiratory activity of the phrenic nerve in an in situ</p><p>preparation, but did not completely block the termination of inspiratory activity (Dutschmann etal.,</p><p>2021), which would be in line with a prominent, but not exclusive role of the Kölliker- Fuse nucleus for</p><p>the termination of inspiration.</p><p>The Kölliker- Fuse nucleus receives input from the pre- Bötzinger and Bötzinger complexes (Ezure</p><p>etal., 2003; Tan etal., 2010; Yang and Feldman, 2018), and from several central chemoreceptor</p><p>areas: the NTS (Loewy and Burton, 1978; Herbert etal., 1990; McGovern etal., 2015b), retro-</p><p>trapezoid nucleus (Rosin et al., 2006; Bochorishvili et al., 2012; Silva et al., 2016b), and cere-</p><p>bellar fastigial nucleus (Fujita etal., 2020). In addition, the Kölliker- Fuse nucleus also receives input</p><p>from the rVRG (Lipski et al., 1994; Yokota et al., 2016), cVRG (Holstege, 1989; Jones et al.,</p><p>2016), periaqueductal gray (Trevizan- Baú etal., 2021b), spinal trigeminal nucleus (Panneton etal.,</p><p>2006; Zhang etal., 2018), paratrigeminal nucleus (Saxon and Hopkins, 1998), pedunculopontine</p><p>tegmental nucleus (PPTg) (Lima etal., 2019b), and vestibular nuclei (Shi etal., 2021). Finally, there</p><p>are descending inputs from the lateral, dorsomedial and paraventricular hypothalamus (Yokota etal.,</p><p>2016; Trevizan- Baú etal., 2021a).</p><p>Glutamatergic projections directly and indirectly (via the rVRG) target the phrenic nucleus (Ellen-</p><p>berger etal., 1990b; Yokota etal., 2004; Yokota etal., 2007; Song etal., 2012a; Geerling etal.,</p><p>2017), as well as the ambiguus, hypoglossal and facial nuclei (Núñez- Abades etal., 1990; Yokota</p><p>etal., 2007; Song etal., 2012a; Yokota etal., 2015; Geerling etal., 2017). The latter connec-</p><p>tions allow premotor neurons in the Kölliker- Fuse nucleus to constrict valve muscles, reducing outflow</p><p>during post- inspiration (Dutschmann and Herbert, 2006).</p><p>Further excitatory projections target, in addition to the other nuclei of the parabrachial complex</p><p>(Song etal., 2012a; Geerling etal., 2017), the pre- Bötzinger complex (Yang etal., 2020), PiCo</p><p>(Oliveira etal., 2021), and lateral parafacial nucleus (Biancardi etal., 2021). Also the cVRG (Gerrits</p><p>and Holstege, 1996; Song etal., 2012a), reticular formation (Geerling etal., 2017), retrotrape-</p><p>zoid nucleus, NTS, and periaqueductal gray (Fulwiler and Saper, 1984; Song etal., 2012a; Geer-</p><p>ling etal., 2017; Trevizan- Baú etal., 2021b) receive glutamatergic input. The caudal part of the</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 8 of 67</p><p>Kölliker- Fuse nucleus sends inhibitory projections mainly to the sensory trigeminal nucleus, but also</p><p>to the dorsomedial hypothalamus (Geerling etal., 2017). Finally, there are projections to the raphe</p><p>nuclei (Hermann etal., 1997; Peyron etal., 2018), vestibular nuclei (Shi etal., 2021), and cerebellar</p><p>cortex (Fu etal., 2011).</p><p>Post-inspiratory complex</p><p>Recently, a second brain region involved in controlling post- inspiration has been identified in the</p><p>ventral part of the intermediate reticular formation: the postinspiratory complex, or PiCo, consisting</p><p>of cholinergic neurons (Anderson etal., 2016; Toor etal., 2019; Oliveira etal., 2021). Isolated in a</p><p>tissue slice, the PiCo can generate rhythmic activity that peaks during post- inspiration, and thus poten-</p><p>tially contributes to a biphasic (pre- Bötzinger complex – PiCo) or triphasic (pre- Bötzinger complex –</p><p>PiCo – parafacial nucleus) oscillator controlling respiration (Anderson etal., 2016; Anderson and</p><p>Ramirez, 2017). Optogenetic stimulation in vivo confirmed that PiCo activity can prolong post-</p><p>inspiration (Oliveira etal., 2021).</p><p>The role of the PiCo in controlling post- inspiration has not yet been fully investigated (Hülsmann,</p><p>2021; Ashhad etal., 2022). Although this is not a proof against a coordinating role of the PiCo for</p><p>post- inspiration, systematic recordings in a whole- brainstem preparation found widespread activity</p><p>during post- inspiration, but more in the pontine region than focused in the area of the PiCo (Dhingra</p><p>etal., 2020). Furthermore, inhibition of the PiCo did not affect the duration of inspiration, while in the</p><p>same study the PiCo was shown to be involved in gating swallowing motor patterns to the respiratory</p><p>system (Toor etal., 2019). In conclusion, it seems</p><p>coeruleus noradrealine neurons: the cerebellar</p><p>innervation. Brain Research 28:165–171. DOI: https://doi.org/10.1016/0006-8993(71)90533-6, PMID: 4104275</p><p>Onimaru H, Homma I. 2003. A novel functional neuron group for respiratory rhythm generation in the ventral</p><p>medulla. The Journal of Neuroscience 23:1478–1486. DOI: https://doi.org/10.1523/JNEUROSCI.23-04-01478.</p><p>2003, PMID: 12598636</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1152/japplphysiol.01128.2001</p><p>https://doi.org/10.1152/japplphysiol.01128.2001</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11960965</p><p>https://doi.org/10.1016/j.resp.2008.09.004</p><p>https://doi.org/10.1016/j.resp.2008.09.004</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18824146</p><p>https://doi.org/10.1016/j.resp.2020.103401</p><p>https://doi.org/10.1016/j.resp.2020.103401</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32036030</p><p>https://doi.org/10.1161/01.RES.0000090361.45027.5B</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12907666</p><p>https://doi.org/10.1371/journal.pcbi.1006475</p><p>https://doi.org/10.1371/journal.pcbi.1006475</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31059498</p><p>https://doi.org/10.1016/j.neuroscience.2016.07.017</p><p>https://doi.org/10.1016/j.neuroscience.2016.07.017</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27436534</p><p>https://doi.org/10.1113/JP280747</p><p>https://doi.org/10.1113/JP280747</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33022747</p><p>https://doi.org/10.2170/jjphysiol.54.431</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15667667</p><p>https://doi.org/10.1002/ana.25178</p><p>https://doi.org/10.1002/ana.25178</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29420859</p><p>https://doi.org/10.3171/2019.1.JNS183157</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30952127</p><p>https://doi.org/10.1016/0006-8993(90)90171-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2139800</p><p>https://doi.org/10.1038/nature20793</p><p>https://doi.org/10.1038/nature20793</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28002412</p><p>https://doi.org/10.1016/0306-4522(78)90102-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/733004</p><p>https://doi.org/10.1007/s12311-022-01499-w</p><p>https://doi.org/10.1007/s12311-022-01499-w</p><p>http://www.ncbi.nlm.nih.gov/pubmed/36575348</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2272895</p><p>https://doi.org/10.1016/s0034-5687(99)00111-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10722859</p><p>https://doi.org/10.1016/j.celrep.2014.06.042</p><p>https://doi.org/10.1016/j.celrep.2014.06.042</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25108805</p><p>https://doi.org/10.3389/neuro.03.004.2009</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19597563</p><p>https://doi.org/10.1016/j.neures.2008.10.004</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18948150</p><p>https://doi.org/10.1113/jphysiol.2007.138180</p><p>https://doi.org/10.1113/jphysiol.2007.138180</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17884928</p><p>https://doi.org/10.1016/j.neuroscience.2021.09.015</p><p>https://doi.org/10.1016/j.neuroscience.2021.09.015</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34582982</p><p>https://doi.org/10.1016/0006-8993(71)90533-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/4104275</p><p>https://doi.org/10.1523/JNEUROSCI.23-04-01478.2003</p><p>https://doi.org/10.1523/JNEUROSCI.23-04-01478.2003</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12598636</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 56 of 67</p><p>Ortega- Sáenz P, López- Barneo J. 2020. Physiology of the carotid body: from molecules to disease. Annual</p><p>Review of Physiology 82:127–149. DOI: https://doi.org/10.1146/annurev-physiol-020518-114427, PMID:</p><p>31618601</p><p>Ovsepian SV, LeBerre M, Steuber V, O’Leary VB, Leibold C, Oliver Dolly J. 2016. Distinctive role of KV1.1 subunit</p><p>in the biology and functions of low threshold K(+) channels with implications for neurological disease.</p><p>Pharmacology & Therapeutics 159:93–101. DOI: https://doi.org/10.1016/j.pharmthera.2016.01.005, PMID:</p><p>26825872</p><p>Pagliardini S, Janczewski WA, Tan W, Dickson CT, Deisseroth K, Feldman JL. 2011. Active expiration induced by</p><p>excitation of ventral medulla in adult anesthetized rats. The Journal of Neuroscience 31:2895–2905. DOI:</p><p>https://doi.org/10.1523/JNEUROSCI.5338-10.2011, PMID: 21414911</p><p>Palmiter RD. 2018. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends in</p><p>Neurosciences 41:280–293. DOI: https://doi.org/10.1016/j.tins.2018.03.007, PMID: 29703377</p><p>Panneton WM, Gan Q, Juric R. 2006. Brainstem projections from recipient zones of the anterior ethmoidal nerve</p><p>in the medullary dorsal horn. Neuroscience 141:889–906. DOI: https://doi.org/10.1016/j.neuroscience.2006.04.</p><p>055, PMID: 16753263</p><p>Panneton WM. 2013. The mammalian diving response: an enigmatic reflex to preserve life? Physiology 28:284–</p><p>297. DOI: https://doi.org/10.1152/physiol.00020.2013, PMID: 23997188</p><p>Panneton WM, Pan B, Gan Q. 2017. Somatotopy in the medullary dorsal horn as a basis for orofacial reflex</p><p>behavior. Frontiers in Neurology 8:522. DOI: https://doi.org/10.3389/fneur.2017.00522, PMID: 29066998</p><p>Pape HC, Pare D. 2010. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction</p><p>of conditioned fear. Physiological Reviews 90:419–463. DOI: https://doi.org/10.1152/physrev.00037.2009,</p><p>PMID: 20393190</p><p>Parfitt KD, Freedman R, Bickford- Wimer PC. 1988. Electrophysiological effects of locally applied noradrenergic</p><p>agents at cerebellar purkinje neurons: receptor specificity. Brain Research 462:242–251. DOI: https://doi.org/</p><p>10.1016/0006-8993(88)90552-5, PMID: 2847850</p><p>Parsons LM, Egan G, Liotti M, Brannan S, Denton D, Shade R, Robillard R, Madden L, Abplanalp B, Fox PT. 2001.</p><p>Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. PNAS</p><p>98:2041–2046. DOI: https://doi.org/10.1073/pnas.98.4.2041, PMID: 11172072</p><p>Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF,</p><p>Kinney HC. 2006. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA</p><p>296:2124. DOI: https://doi.org/10.1001/jama.296.17.2124, PMID: 17077377</p><p>Paulhus K, Ammerman L, Glasscock E. 2020. Clinical spectrum of kcna1 mutations: new insights into episodic</p><p>ataxia and epilepsy comorbidity. International Journal of Molecular Sciences 21:2802. DOI: https://doi.org/10.</p><p>3390/ijms21082802, PMID: 32316562</p><p>Pei L, Leblanc M, Barish G, Atkins A, Nofsinger R, Whyte J, Gold D, He M, Kawamura K, Li HR, Downes M, Yu RT,</p><p>Powell HC, Lingrel JB, Evans RM. 2011. Thyroid hormone receptor repression is linked to type I pneumocyte–</p><p>associated respiratory distress syndrome. Nature Medicine 17:1466–1472. DOI: https://doi.org/10.1038/nm.</p><p>2450, PMID: 22001906</p><p>Pérez de Los Cobos Pallares F, Bautista TG, Stanić D, Egger V, Dutschmann M. 2016. Brainstem- mediated</p><p>sniffing and respiratory modulation during odor stimulation. Respiratory Physiology & Neurobiology 233:17–</p><p>24. DOI: https://doi.org/10.1016/j.resp.2016.07.008, PMID: 27473930</p><p>Perez- Pouchoulen M, Toledo R, Garcia LI, Perez- Estudillo CA, Coria- Avila GA, Hernandez ME, Carrillo P,</p><p>Manzo J. 2016. Androgen receptors in Purkinje neurons are modulated by systemic testosterone and sexual</p><p>training in a region- specific manner in the male rat. Physiology & Behavior 156:191–198. DOI: https://doi.org/</p><p>10.1016/j.physbeh.2016.01.027, PMID: 26812590</p><p>Perl O, Ravia A, Rubinson M, Eisen A, Soroka T, Mor N, Secundo L, Sobel N. 2019. Human non- olfactory</p><p>cognition phase- locked with inhalation. Nature Human Behaviour 3:501–512. DOI: https://doi.org/10.1038/</p><p>s41562-019-0556-z, PMID: 31089297</p><p>Petrov T, Krukoff TL, Jhamandas JH. 1992. The hypothalamic paraventricular and lateral parabrachial nuclei</p><p>receive collaterals from raphe nucleus neurons: a combined double retrograde and immunocytochemical study.</p><p>The Journal of Comparative Neurology 318:18–26. DOI: https://doi.org/10.1002/cne.903180103, PMID:</p><p>1583154</p><p>Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH. 1998a. Forebrain afferents to the rat dorsal raphe nucleus</p><p>demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468. DOI: https://doi.</p><p>org/10.1016/s0306-4522(97)00268-6, PMID: 9466453</p><p>Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. 1998b. Neurons containing</p><p>hypocretin (orexin) project to multiple</p><p>neuronal systems. The Journal of Neuroscience 18:9996–10015. DOI:</p><p>https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998, PMID: 9822755</p><p>Peyron C, Rampon C, Petit JM, Luppi PH. 2018. Sub- regions of the dorsal raphé nucleus receive different inputs</p><p>from the brainstem. Sleep Medicine 49:53–63. DOI: https://doi.org/10.1016/j.sleep.2018.07.002, PMID:</p><p>30078667</p><p>Philippot P, Chapelle G, Blairy S. 2002. Respiratory feedback in the generation of emotion. Cognition & Emotion</p><p>16:605–627. DOI: https://doi.org/10.1080/02699930143000392</p><p>Phillips KH, Aitchison RE. 1997. Effects of psychomotor instruction on elementary general music students’</p><p>singing performance. Journal of Research in Music Education 45:185–196. DOI: https://doi.org/10.2307/</p><p>3345579</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1146/annurev-physiol-020518-114427</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31618601</p><p>https://doi.org/10.1016/j.pharmthera.2016.01.005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26825872</p><p>https://doi.org/10.1523/JNEUROSCI.5338-10.2011</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21414911</p><p>https://doi.org/10.1016/j.tins.2018.03.007</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29703377</p><p>https://doi.org/10.1016/j.neuroscience.2006.04.055</p><p>https://doi.org/10.1016/j.neuroscience.2006.04.055</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16753263</p><p>https://doi.org/10.1152/physiol.00020.2013</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23997188</p><p>https://doi.org/10.3389/fneur.2017.00522</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29066998</p><p>https://doi.org/10.1152/physrev.00037.2009</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20393190</p><p>https://doi.org/10.1016/0006-8993(88)90552-5</p><p>https://doi.org/10.1016/0006-8993(88)90552-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2847850</p><p>https://doi.org/10.1073/pnas.98.4.2041</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11172072</p><p>https://doi.org/10.1001/jama.296.17.2124</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17077377</p><p>https://doi.org/10.3390/ijms21082802</p><p>https://doi.org/10.3390/ijms21082802</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32316562</p><p>https://doi.org/10.1038/nm.2450</p><p>https://doi.org/10.1038/nm.2450</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22001906</p><p>https://doi.org/10.1016/j.resp.2016.07.008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27473930</p><p>https://doi.org/10.1016/j.physbeh.2016.01.027</p><p>https://doi.org/10.1016/j.physbeh.2016.01.027</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26812590</p><p>https://doi.org/10.1038/s41562-019-0556-z</p><p>https://doi.org/10.1038/s41562-019-0556-z</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31089297</p><p>https://doi.org/10.1002/cne.903180103</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1583154</p><p>https://doi.org/10.1016/s0306-4522(97)00268-6</p><p>https://doi.org/10.1016/s0306-4522(97)00268-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9466453</p><p>https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9822755</p><p>https://doi.org/10.1016/j.sleep.2018.07.002</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30078667</p><p>https://doi.org/10.1080/02699930143000392</p><p>https://doi.org/10.2307/3345579</p><p>https://doi.org/10.2307/3345579</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 57 of 67</p><p>Pierce ET, Hoddevik GH, Walberg F. 1977. The cerebellar projection from the raphe nuclei in the cat as studied</p><p>with the method of retrograde transport of horseradish peroxidase. Anatomy and Embryology 152:73–87.</p><p>DOI: https://doi.org/10.1007/BF00341436, PMID: 605998</p><p>Pijpers A, Ruigrok TJH. 2006. Organization of pontocerebellar projections to identified climbing fiber zones in</p><p>the rat. The Journal of Comparative Neurology 496:513–528. DOI: https://doi.org/10.1002/cne.20940, PMID:</p><p>16572464</p><p>Pilowsky PM. 2014. Peptides, serotonin, and breathing: the role of the raphe in the control of respiration.</p><p>Progress in Brain Research 209:169–189. DOI: https://doi.org/10.1016/B978-0-444-63274-6.00009-6, PMID:</p><p>24746048</p><p>Pineda J, Aghajanian GK. 1997. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by</p><p>modulating a proton- and polyamine- sensitive inward rectifier potassium current. Neuroscience 77:723–743.</p><p>DOI: https://doi.org/10.1016/s0306-4522(96)00485-x, PMID: 9070748</p><p>Piper AJ, Yee BJ. 2014. Hypoventilation syndromes. Comprehensive Physiology 4:1639–1676. DOI: https://doi.</p><p>org/10.1002/cphy.c140008, PMID: 25428856</p><p>Pisanski A, Pagliardini S. 2019. The parafacial respiratory group and the control of active expiration. Respiratory</p><p>Physiology & Neurobiology 265:153–160. DOI: https://doi.org/10.1016/j.resp.2018.06.010, PMID: 29933053</p><p>Pitts T, Gayagoy AG, Rose MJ, Poliacek I, Condrey JA, Musselwhite MN, Shen TY, Davenport PW, Bolser DC.</p><p>2015. Suppression of abdominal motor activity during swallowing in cats and humans. PLOS ONE</p><p>10:e0128245. DOI: https://doi.org/10.1371/journal.pone.0128245, PMID: 26020240</p><p>Plum F, Swanson AG. 1959. Central neurogenic hyperventilation in man. A.M.A. Archives of Neurology and</p><p>Psychiatry 81:535–549. DOI: https://doi.org/10.1001/archneurpsyc.1959.02340170001001, PMID: 13636523</p><p>Poe GR, Foote S, Eschenko O, Johansen JP, Bouret S, Aston- Jones G, Harley CW, Manahan- Vaughan D,</p><p>Weinshenker D, Valentino R, Berridge C, Chandler DJ, Waterhouse B, Sara SJ. 2020. Locus coeruleus: a new</p><p>look at the blue spot. Nature Reviews. Neuroscience 21:644–659. DOI: https://doi.org/10.1038/s41583-020-</p><p>0360-9, PMID: 32943779</p><p>Pollak Dorocic I, Fürth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlén M, Meletis K. 2014. A whole- brain</p><p>atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83:663–678. DOI:</p><p>https://doi.org/10.1016/j.neuron.2014.07.002, PMID: 25102561</p><p>Popovic RM, White DP. 1998. Upper airway muscle activity in normal women: influence of hormonal status.</p><p>Journal of Applied Physiology 84:1055–1062. DOI: https://doi.org/10.1152/jappl.1998.84.3.1055, PMID:</p><p>9480969</p><p>Porter WT. 1895. The path of the respiratory impulse from the bulb to the phrenic nuclei. The Journal of</p><p>Physiology 17:455–485. DOI: https://doi.org/10.1113/jphysiol.1895.sp000553, PMID: 16992199</p><p>Ptak K, Yamanishi T, Aungst J, Milescu LS, Zhang R, Richerson GB, Smith JC. 2009. Raphé neurons stimulate</p><p>respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. The</p><p>Journal of Neuroscience 29:3720–3737. DOI: https://doi.org/10.1523/JNEUROSCI.5271-08.2009, PMID:</p><p>19321769</p><p>Pujol J, Blanco- Hinojo L, Ortiz H, Gallart L, Moltó L, Martínez- Vilavella G, Vilà E, Pacreu S, Adalid I, Deus J,</p><p>Pérez- Sola V, Fernandez- Candil J. 2022. Mapping the neural systems driving breathing at the transition to</p><p>unconsciousness. NeuroImage 246:118779. DOI: https://doi.org/10.1016/j.neuroimage.2021.118779, PMID:</p><p>34875384</p><p>Putnam RW, Filosa JA, Ritucci NA. 2004. Cellular mechanisms involved in CO(2) and acid signaling in</p><p>chemosensitive neurons. American Journal of Physiology. Cell Physiology 287:C1493–C1526. DOI: https://doi.</p><p>org/10.1152/ajpcell.00282.2004, PMID: 15525685</p><p>Quartarone A, Cacciola A, Milardi D, Ghilardi MF, Calamuneri A, Chillemi G, Anastasi G, Rothwell J. 2020. New</p><p>insights into cortico- basal- cerebellar connectome: clinical and physiological considerations. Brain 143:396–406.</p><p>DOI: https://doi.org/10.1093/brain/awz310, PMID: 31628799</p><p>Quattrochi J, Datta S, Hobson JA. 1998. Cholinergic and non- cholinergic afferents of the caudolateral</p><p>parabrachial nucleus: a role in the long- term enhancement of rapid eye movement sleep. Neuroscience</p><p>83:1123–1136. DOI: https://doi.org/10.1016/s0306-4522(97)00471-5, PMID: 9502251</p><p>Quintero MC, Putnam RW, Cordovez JM. 2017. Theoretical perspectives on central chemosensitivity: CO2/</p><p>H+-sensitive neurons in the locus coeruleus. PLOS Computational Biology 13:e1005853. DOI: https://doi.org/</p><p>10.1371/journal.pcbi.1005853, PMID: 29267284</p><p>Ramanantsoa N, Hirsch MR, Thoby- Brisson M, Dubreuil V, Bouvier J, Ruffault PL, Matrot B, Fortin G, Brunet JF,</p><p>Gallego J, Goridis C. 2011. Breathing without CO(2) chemosensitivity in conditional phox2b mutants. The</p><p>Journal of Neuroscience 31:12880–12888. DOI: https://doi.org/10.1523/JNEUROSCI.1721-11.2011, PMID:</p><p>21900566</p><p>Ramirez JM, Schwarzacher</p><p>SW, Pierrefiche O, Olivera BM, Richter DW. 1998. Selective lesioning of the cat</p><p>pre- Bötzinger complex in vivo eliminates breathing but not gasping. The Journal of Physiology 507 ( Pt</p><p>3):895–907. DOI: https://doi.org/10.1111/j.1469-7793.1998.895bs.x, PMID: 9508848</p><p>Ramirez J- M, Koch H, Garcia AJ, Doi A, Zanella S. 2011. The role of spiking and bursting pacemakers in the</p><p>neuronal control of breathing. Journal of Biological Physics 37:241–261. DOI: https://doi.org/10.1007/</p><p>s10867- 011-9214-z, PMID: 22654176</p><p>Ramsay SC, Adams L, Murphy K, Corfield DR, Grootoonk S, Bailey DL, Frackowiak RS, Guz A. 1993. Regional</p><p>cerebral blood flow during volitional expiration in man: a comparison with volitional inspiration. The Journal of</p><p>Physiology 461:85–101. DOI: https://doi.org/10.1113/jphysiol.1993.sp019503, PMID: 8350282</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1007/BF00341436</p><p>http://www.ncbi.nlm.nih.gov/pubmed/605998</p><p>https://doi.org/10.1002/cne.20940</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16572464</p><p>https://doi.org/10.1016/B978-0-444-63274-6.00009-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24746048</p><p>https://doi.org/10.1016/s0306-4522(96)00485-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9070748</p><p>https://doi.org/10.1002/cphy.c140008</p><p>https://doi.org/10.1002/cphy.c140008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25428856</p><p>https://doi.org/10.1016/j.resp.2018.06.010</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29933053</p><p>https://doi.org/10.1371/journal.pone.0128245</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26020240</p><p>https://doi.org/10.1001/archneurpsyc.1959.02340170001001</p><p>http://www.ncbi.nlm.nih.gov/pubmed/13636523</p><p>https://doi.org/10.1038/s41583-020-0360-9</p><p>https://doi.org/10.1038/s41583-020-0360-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32943779</p><p>https://doi.org/10.1016/j.neuron.2014.07.002</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25102561</p><p>https://doi.org/10.1152/jappl.1998.84.3.1055</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9480969</p><p>https://doi.org/10.1113/jphysiol.1895.sp000553</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16992199</p><p>https://doi.org/10.1523/JNEUROSCI.5271-08.2009</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19321769</p><p>https://doi.org/10.1016/j.neuroimage.2021.118779</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34875384</p><p>https://doi.org/10.1152/ajpcell.00282.2004</p><p>https://doi.org/10.1152/ajpcell.00282.2004</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15525685</p><p>https://doi.org/10.1093/brain/awz310</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31628799</p><p>https://doi.org/10.1016/s0306-4522(97)00471-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9502251</p><p>https://doi.org/10.1371/journal.pcbi.1005853</p><p>https://doi.org/10.1371/journal.pcbi.1005853</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29267284</p><p>https://doi.org/10.1523/JNEUROSCI.1721-11.2011</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21900566</p><p>https://doi.org/10.1111/j.1469-7793.1998.895bs.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9508848</p><p>https://doi.org/10.1007/s10867-011-9214-z</p><p>https://doi.org/10.1007/s10867-011-9214-z</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22654176</p><p>https://doi.org/10.1113/jphysiol.1993.sp019503</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8350282</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 58 of 67</p><p>Raux M, Tyvaert L, Ferreira M, Kindler F, Bardinet E, Karachi C, Morelot- Panzini C, Gotman J, Pike GB, Koski L,</p><p>Similowski T. 2013. Functional magnetic resonance imaging suggests automatization of the cortical response to</p><p>inspiratory threshold loading in humans. Respiratory Physiology & Neurobiology 189:571–580. DOI: https://</p><p>doi.org/10.1016/j.resp.2013.08.005, PMID: 23994177</p><p>Reddy MK, Patel KP, Schultz HD. 2005. Differential role of the paraventricular nucleus of the hypothalamus in</p><p>modulating the sympathoexcitatory component of peripheral and central chemoreflexes. American Journal of</p><p>Physiology. Regulatory, Integrative and Comparative Physiology 289:R789–R797. DOI: https://doi.org/10.1152/</p><p>ajpregu.00222.2005, PMID: 15919733</p><p>Ricardo JA, Tongju Koh E. 1978. Anatomical evidence of direct projections from the nucleus of the solitary tract</p><p>to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Research 153:1–26. DOI:</p><p>https://doi.org/10.1016/0006-8993(78)91125-3, PMID: 679038</p><p>Richerson GB. 1995. Response to CO2 of neurons in the rostral ventral medulla in vitro. Journal of</p><p>Neurophysiology 73:933–944. DOI: https://doi.org/10.1152/jn.1995.73.3.933, PMID: 7608778</p><p>Rikard- Bell GC, Bystrzycka EK, Nail BS. 1984. Brainstem projections to the phrenic nucleus: a HRP study in the</p><p>cat. Brain Research Bulletin 12:469–477. DOI: https://doi.org/10.1016/0361-9230(84)90162-X, PMID:</p><p>6467035</p><p>Rikard- Bell GC, Bystrzycka EK, Nail BS. 1985. Cells of origin of corticospinal projections to phrenic and thoracic</p><p>respiratory motoneurones in the cat as shown by retrograde transport of HRP. Brain Research Bulletin 14:39–</p><p>47. DOI: https://doi.org/10.1016/0361-9230(85)90175-3, PMID: 3986627</p><p>Rimmer KP, Ford GT, Whitelaw WA. 1995. Interaction between postural and respiratory control of human</p><p>intercostal muscles. Journal of Applied Physiology 79:1556–1561. DOI: https://doi.org/10.1152/jappl.1995.79.</p><p>5.1556, PMID: 8594013</p><p>Rinaman L. 1998. Oxytocinergic inputs to the nucleus of the solitary tract and dorsal motor nucleus of the vagus</p><p>in neonatal rats. The Journal of Comparative Neurology 399:101–109. DOI: https://doi.org/10.1002/(sici)</p><p>1096-9861(19980914)399:1<101::aid-cne8>3.0.co;2-5, PMID: 9725704</p><p>Rinaman L. 2010. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions</p><p>involved in food intake and energy expenditure. Brain Research 1350:18–34. DOI: https://doi.org/10.1016/j.</p><p>brainres.2010.03.059, PMID: 20353764</p><p>Rizvi TA, Ennis M, Behbehani MM, Shipley MT. 1991. Connections between the central nucleus of the amygdala</p><p>and the midbrain periaqueductal gray: topography and reciprocity. The Journal of Comparative Neurology</p><p>303:121–131. DOI: https://doi.org/10.1002/cne.903030111, PMID: 1706363</p><p>Robertson SD, Plummer NW, de Marchena J, Jensen P. 2013. Developmental origins of central norepinephrine</p><p>neuron diversity. Nature Neuroscience 16:1016–1023. DOI: https://doi.org/10.1038/nn.3458, PMID: 23852112</p><p>Romano V, De Propris L, Bosman LWJ, Warnaar P, Ten Brinke MM, Lindeman S, Ju C, Velauthapillai A,</p><p>Spanke JK, Middendorp Guerra E, Hoogland TM, Negrello M, D’Angelo E, De Zeeuw CI. 2018. Potentiation of</p><p>cerebellar purkinje cells facilitates whisker reflex adaptation through increased simple spike activity. eLife</p><p>7:e38852. DOI: https://doi.org/10.7554/eLife.38852, PMID: 30561331</p><p>Romano V, Reddington AL, Cazzanelli S, Mazza R, Ma Y, Strydis C, Negrello M, Bosman LWJ, De Zeeuw CI.</p><p>2020. Functional convergence of autonomic and sensorimotor processing in the lateral cerebellum. Cell</p><p>Reports 32:107867. DOI: https://doi.org/10.1016/j.celrep.2020.107867, PMID: 32640232</p><p>Room P, Postema F, Korf J. 1981. Divergent axon collaterals of rat locus coeruleus neurons: demonstration by a</p><p>fluorescent double labeling technique. Brain Research 221:219–230. DOI: https://doi.org/10.1016/0006-8993(</p><p>81)90773-3, PMID: 7284768</p><p>Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC. 2016. Cell- type- specific control of</p><p>brainstem locomotor circuits by basal ganglia. Cell 164:526–537. DOI: https://doi.org/10.1016/j.cell.2015.12.</p><p>037, PMID: 26824660</p><p>Rosin DL, Chang DA, Guyenet PG. 2006. Afferent and efferent connections of the rat retrotrapezoid nucleus.</p><p>The Journal of Comparative Neurology 499:64–89. DOI: https://doi.org/10.1002/cne.21105, PMID: 16958085</p><p>Ross R, Blair SN, Arena R, Church TS, Després J- P, Franklin BA, Haskell WL, Kaminsky LA, Levine BD, Lavie CJ,</p><p>Myers J, Niebauer J, Sallis R, Sawada SS, Sui X, Wisløff U, American Heart Association Physical Activity</p><p>Committee of the Council on Lifestyle and Cardiometabolic Health, Council on Clinical Cardiology, Council on</p><p>Epidemiology and Prevention, Council on Cardiovascular and Stroke Nursing, etal. 2016. Importance of</p><p>assessing cardiorespiratory fitness in clinical practice: A case for fitness as A clinical vital sign:</p><p>A scientific</p><p>statement from the american heart association. Circulation 134:e653–e699. DOI: https://doi.org/10.1161/CIR.</p><p>0000000000000461, PMID: 27881567</p><p>Rousseau JP, Tenorio- Lopes L, Ghio SC, Desjardins P, Fournier S, Kinkead R. 2021. Thyroid hormones during the</p><p>perinatal period are necessary to respiratory network development of newborn rats. Experimental Neurology</p><p>345:113813. DOI: https://doi.org/10.1016/j.expneurol.2021.113813, PMID: 34284029</p><p>Rübsamen R, Schweizer H. 1986. Control of echolocation pulses by neurons of the nucleus ambiguus in the</p><p>rufous horseshoe bat, rhinolophus rouxi. II. afferent and efferent connections of the motor nucleus of the</p><p>laryngeal nerves. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 159:689–</p><p>699. DOI: https://doi.org/10.1007/BF00612041, PMID: 3806434</p><p>Ruffault PL, D’Autréaux F, Hayes JA, Nomaksteinsky M, Autran S, Fujiyama T, Hoshino M, Hägglund M, Kiehn O,</p><p>Brunet JF, Fortin G, Goridis C. 2015. The retrotrapezoid nucleus neurons expressing atoh1 and phox2b are</p><p>essential for the respiratory response to co₂. eLife 4:e07051. DOI: https://doi.org/10.7554/eLife.07051, PMID:</p><p>25866925</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1016/j.resp.2013.08.005</p><p>https://doi.org/10.1016/j.resp.2013.08.005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23994177</p><p>https://doi.org/10.1152/ajpregu.00222.2005</p><p>https://doi.org/10.1152/ajpregu.00222.2005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15919733</p><p>https://doi.org/10.1016/0006-8993(78)91125-3</p><p>http://www.ncbi.nlm.nih.gov/pubmed/679038</p><p>https://doi.org/10.1152/jn.1995.73.3.933</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7608778</p><p>https://doi.org/10.1016/0361-9230(84)90162-X</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6467035</p><p>https://doi.org/10.1016/0361-9230(85)90175-3</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3986627</p><p>https://doi.org/10.1152/jappl.1995.79.5.1556</p><p>https://doi.org/10.1152/jappl.1995.79.5.1556</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8594013</p><p>https://doi.org/10.1002/(sici)1096-9861(19980914)399:1<101::aid-cne8>3.0.co;2-5</p><p>https://doi.org/10.1002/(sici)1096-9861(19980914)399:1<101::aid-cne8>3.0.co;2-5</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9725704</p><p>https://doi.org/10.1016/j.brainres.2010.03.059</p><p>https://doi.org/10.1016/j.brainres.2010.03.059</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20353764</p><p>https://doi.org/10.1002/cne.903030111</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1706363</p><p>https://doi.org/10.1038/nn.3458</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23852112</p><p>https://doi.org/10.7554/eLife.38852</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30561331</p><p>https://doi.org/10.1016/j.celrep.2020.107867</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32640232</p><p>https://doi.org/10.1016/0006-8993(81)90773-3</p><p>https://doi.org/10.1016/0006-8993(81)90773-3</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7284768</p><p>https://doi.org/10.1016/j.cell.2015.12.037</p><p>https://doi.org/10.1016/j.cell.2015.12.037</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26824660</p><p>https://doi.org/10.1002/cne.21105</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16958085</p><p>https://doi.org/10.1161/CIR.0000000000000461</p><p>https://doi.org/10.1161/CIR.0000000000000461</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27881567</p><p>https://doi.org/10.1016/j.expneurol.2021.113813</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34284029</p><p>https://doi.org/10.1007/BF00612041</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3806434</p><p>https://doi.org/10.7554/eLife.07051</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25866925</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 59 of 67</p><p>Ruggiero DA, Anwar M, Golanov EV, Reis DJ. 1997. The pedunculopontine tegmental nucleus issues collaterals</p><p>to the fastigial nucleus and rostral ventrolateral reticular nucleus in the rat. Brain Research 760:272–276. DOI:</p><p>https://doi.org/10.1016/s0006-8993(97)00397-1, PMID: 9237546</p><p>Ruigrok TJH, Cella F, Voogd J. 1995. Connections of the lateral reticular nucleus to the lateral vestibular nucleus</p><p>in the rat an anterograde tracing study with phaseolus vulgaris leucoagglutinin. The European Journal of</p><p>Neuroscience 7:1410–1413. DOI: https://doi.org/10.1111/j.1460-9568.1995.tb01133.x, PMID: 7582116</p><p>Ruigrok TJH, Sillitoe RV, Voogd J. 2015. Chapter 9 - cerebellum and cerebellar connections. Paxinos G (Ed). The</p><p>Rat Nervous System. Academic Press. p. 133–205.</p><p>Ruyle BC, Klutho PJ, Baines CP, Heesch CM, Hasser EM. 2018. Hypoxia activates a neuropeptidergic pathway</p><p>from the paraventricular nucleus of the hypothalamus to the nucleus tractus solitarii. American Journal of</p><p>Physiology. Regulatory, Integrative and Comparative Physiology 315:R1167–R1182. DOI: https://doi.org/10.</p><p>1152/ajpregu.00244.2018, PMID: 30230933</p><p>Ruyle BC, Martinez D, Heesch CM, Kline DD, Hasser EM. 2019. The PVN enhances cardiorespiratory responses</p><p>to acute hypoxia via input to the nts. American Journal of Physiology. Regulatory, Integrative and Comparative</p><p>Physiology 317:R818–R833. DOI: https://doi.org/10.1152/ajpregu.00135.2019, PMID: 31509428</p><p>Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, Boon P, Crespel A, Dworetzky BA, Høgenhaven H,</p><p>Lerche H, Maillard L, Malter MP, Marchal C, Murthy JMK, Nitsche M, Pataraia E, Rabben T, Rheims S, Sadzot B,</p><p>etal. 2013. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a</p><p>retrospective study. The Lancet. Neurology 12:966–977. DOI: https://doi.org/10.1016/S1474-4422(13)70214-X,</p><p>PMID: 24012372</p><p>Sabino JPJ, Oliveira LV, Soriano RN, Kwiatkoski M, Branco LGS, da Silva GSF. 2021. Role of hydrogen sulfide in</p><p>ventilatory responses to hypercapnia in the medullary raphe of adult rats. Experimental Physiology 106:1992–</p><p>2001. DOI: https://doi.org/10.1113/EP089335, PMID: 34159656</p><p>Sadakane K, Kondo M, Nisimaru N. 2000. Direct projection from the cardiovascular control region of the</p><p>cerebellar cortex, the lateral nodulus- uvula, to the brainstem in rabbits. Neuroscience Research 36:15–26. DOI:</p><p>https://doi.org/10.1016/s0168-0102(99)00103-0, PMID: 10678528</p><p>Saigal RP, Karamanlidis AN, Voogd J, Mangana O, Michaloudi H. 1980a. Secondary trigeminocerebellar</p><p>projections in sheep studied with the horseradish peroxidase tracing method. The Journal of Comparative</p><p>Neurology 189:537–553. DOI: https://doi.org/10.1002/cne.901890307, PMID: 6154721</p><p>Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O. 1980b. Cerebellar afferents from motor nuclei</p><p>of cranial nerves, the nucleus of the solitary tract, and nuclei coeruleus and parabrachialis in sheep,</p><p>demonstrated with retrograde transport of horseradish peroxidase. Brain Research 197:200–206. DOI: https://</p><p>doi.org/10.1016/0006-8993(80)90445-x, PMID: 7397552</p><p>Sakaguchi Y, Aiba E. 2016. Relationship between musical characteristics and temporal breathing pattern in piano</p><p>performance. Frontiers in Human Neuroscience 10:381. DOI: https://doi.org/10.3389/fnhum.2016.00381,</p><p>PMID: 27516736</p><p>Salomoni S, van den Hoorn W, Hodges P, Larson CR. 2016. Breathing and singing: objective characterization of</p><p>breathing patterns in classical singers. PLOS ONE 11:e0155084. DOI: https://doi.org/10.1371/journal.pone.</p><p>0155084, PMID: 27159498</p><p>Sant’Ambrogio G. 1982. Information arising from the tracheobronchial tree of mammals. Physiological Reviews</p><p>62:531–569. DOI: https://doi.org/10.1152/physrev.1982.62.2.531, PMID: 6803268</p><p>Sant’Ambrogio G, Mathew OP, Fisher JT, Sant’Ambrogio FB. 1983. Laryngeal receptors responding to</p><p>transmural pressure, airflow and local muscle activity. Respiration Physiology 54:317–330. DOI: https://doi.org/</p><p>10.1016/0034-5687(83)90075-0, PMID: 6672916</p><p>Sant’Ambrogio G, Widdicombe J. 2001. Reflexes from airway rapidly adapting receptors. Respiration Physiology</p><p>125:33–45. DOI: https://doi.org/10.1016/s0034-5687(00)00203-6, PMID: 11240151</p><p>Santin JM, Hartzler LK. 2013. Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the</p><p>bullfrog, lithobates catesbeianus. Respiratory Physiology & Neurobiology 185:553–561. DOI: https://doi.org/</p><p>10.1016/j.resp.2012.11.002, PMID: 23146875</p><p>Saper CB, Loewy AD. 1980. Efferent connections of the parabrachial nucleus in the rat.</p><p>Brain Research 197:291–</p><p>317. DOI: https://doi.org/10.1016/0006-8993(80)91117-8, PMID: 7407557</p><p>Saponjic J, Radulovacki M, Carley DW. 2003. Respiratory pattern modulation by the pedunculopontine</p><p>tegmental nucleus. Respiratory Physiology & Neurobiology 138:223–237. DOI: https://doi.org/10.1016/j.resp.</p><p>2003.08.002, PMID: 14609512</p><p>Saunders SE, Levitt ES. 2020. Kölliker- fuse/parabrachial complex mu opioid receptors contribute to fentanyl-</p><p>induced apnea and respiratory rate depression. Respiratory Physiology & Neurobiology 275:103388. DOI:</p><p>https://doi.org/10.1016/j.resp.2020.103388, PMID: 31953234</p><p>Saxon DW, Hopkins DA. 1998. Efferent and collateral organization of paratrigeminal nucleus projections: an</p><p>anterograde and retrograde fluorescent tracer study in the rat. The Journal of Comparative Neurology</p><p>402:93–110. DOI: https://doi.org/10.1002/(SICI)1096-9861(19981207)402:1<93::AID-CNE7>3.0.CO;2-A, PMID:</p><p>9831048</p><p>Saxon DW, Hopkins DA. 2006. Ultrastructure and synaptology of the paratrigeminal nucleus in the rat: primary</p><p>pharyngeal and laryngeal afferent projections. Synapse 59:220–234. DOI: https://doi.org/10.1002/syn.20233,</p><p>PMID: 16385507</p><p>Schaefer ML, Böttger B, Silver WL, Finger TE. 2002. Trigeminal collaterals in the nasal epithelium and olfactory</p><p>bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. The Journal of</p><p>Comparative Neurology 444:221–226. DOI: https://doi.org/10.1002/cne.10143, PMID: 11840476</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1016/s0006-8993(97)00397-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9237546</p><p>https://doi.org/10.1111/j.1460-9568.1995.tb01133.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7582116</p><p>https://doi.org/10.1152/ajpregu.00244.2018</p><p>https://doi.org/10.1152/ajpregu.00244.2018</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30230933</p><p>https://doi.org/10.1152/ajpregu.00135.2019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31509428</p><p>https://doi.org/10.1016/S1474-4422(13)70214-X</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24012372</p><p>https://doi.org/10.1113/EP089335</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34159656</p><p>https://doi.org/10.1016/s0168-0102(99)00103-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10678528</p><p>https://doi.org/10.1002/cne.901890307</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6154721</p><p>https://doi.org/10.1016/0006-8993(80)90445-x</p><p>https://doi.org/10.1016/0006-8993(80)90445-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7397552</p><p>https://doi.org/10.3389/fnhum.2016.00381</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27516736</p><p>https://doi.org/10.1371/journal.pone.0155084</p><p>https://doi.org/10.1371/journal.pone.0155084</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27159498</p><p>https://doi.org/10.1152/physrev.1982.62.2.531</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6803268</p><p>https://doi.org/10.1016/0034-5687(83)90075-0</p><p>https://doi.org/10.1016/0034-5687(83)90075-0</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6672916</p><p>https://doi.org/10.1016/s0034-5687(00)00203-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11240151</p><p>https://doi.org/10.1016/j.resp.2012.11.002</p><p>https://doi.org/10.1016/j.resp.2012.11.002</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23146875</p><p>https://doi.org/10.1016/0006-8993(80)91117-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7407557</p><p>https://doi.org/10.1016/j.resp.2003.08.002</p><p>https://doi.org/10.1016/j.resp.2003.08.002</p><p>http://www.ncbi.nlm.nih.gov/pubmed/14609512</p><p>https://doi.org/10.1016/j.resp.2020.103388</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31953234</p><p>https://doi.org/10.1002/(SICI)1096-9861(19981207)402:1<93::AID-CNE7>3.0.CO;2-A</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9831048</p><p>https://doi.org/10.1002/syn.20233</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16385507</p><p>https://doi.org/10.1002/cne.10143</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11840476</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 60 of 67</p><p>Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, Malenka RC,</p><p>Kremer EJ, Luo L. 2015. Viral- genetic tracing of the input- output organization of a central noradrenaline circuit.</p><p>Nature 524:88–92. DOI: https://doi.org/10.1038/nature14600, PMID: 26131933</p><p>Schwarzacher SW, Rüb U, Deller T. 2011. Neuroanatomical characteristics of the human pre- Bötzinger complex</p><p>and its involvement in neurodegenerative brainstem diseases. Brain 134:24–35. DOI: https://doi.org/10.1093/</p><p>brain/awq327, PMID: 21115469</p><p>Seijo- Martínez M, Varela- Freijanes A, Grandes J, Vázquez F. 2006. Sneeze related area in the medulla:</p><p>localisation of the human sneezing centre? Journal of Neurology, Neurosurgery, and Psychiatry 77:559–561.</p><p>DOI: https://doi.org/10.1136/jnnp.2005.068601, PMID: 16354739</p><p>Semba K, Fibiger HC. 1992. Afferent connections of the laterodorsal and the pedunculopontine tegmental</p><p>nuclei in the rat: a retro- and antero- grade transport and immunohistochemical study. The Journal of</p><p>Comparative Neurology 323:387–410. DOI: https://doi.org/10.1002/cne.903230307, PMID: 1281170</p><p>Sengul G, Fu Y, Yu Y, Paxinos G. 2015. Spinal cord projections to the cerebellum in the mouse. Brain Structure &</p><p>Function 220:2997–3009. DOI: https://doi.org/10.1007/s00429-014-0840-7, PMID: 25009313</p><p>Seppälä EM, Nitschke JB, Tudorascu DL, Hayes A, Goldstein MR, Nguyen DTH, Perlman D, Davidson RJ. 2014.</p><p>Breathing- based meditation decreases posttraumatic stress disorder symptoms in U.S. military veterans: a</p><p>randomized controlled longitudinal study. Journal of Traumatic Stress 27:397–405. DOI: https://doi.org/10.</p><p>1002/jts.21936, PMID: 25158633</p><p>Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. 2015. Molecular aspects of structure, gating, and physiology</p><p>of ph- sensitive background k2p and kir K+-transport channels. Physiological Reviews 95:179–217. DOI: https://</p><p>doi.org/10.1152/physrev.00016.2014, PMID: 25540142</p><p>Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB. 2003. Midbrain serotonergic neurons are central</p><p>ph chemoreceptors. Nature Neuroscience 6:1139–1140. DOI: https://doi.org/10.1038/nn1130, PMID:</p><p>14517544</p><p>Shannon R, Freeman D. 1981. Nucleus retroambigualis respiratory neurons: responses to intercostal and</p><p>abdominal muscle afferents. Respiration Physiology 45:357–375. DOI: https://doi.org/10.1016/0034-5687(81)</p><p>90018-9, PMID: 6460305</p><p>Sherman D, Worrell JW, Cui Y, Feldman JL. 2015. Optogenetic perturbation of preBötzinger complex inhibitory</p><p>neurons modulates respiratory pattern. Nature Neuroscience 18:408–414. DOI: https://doi.org/10.1038/nn.</p><p>3938, PMID: 25643296</p><p>Shi Y, Stornetta RL, Stornetta DS, Onengut- Gumuscu S, Farber EA, Turner SD, Guyenet PG, Bayliss DA. 2017.</p><p>Neuromedin B expression defines the mouse retrotrapezoid nucleus. The Journal of Neuroscience 37:11744–</p><p>11757. DOI: https://doi.org/10.1523/JNEUROSCI.2055-17.2017, PMID: 29066557</p><p>Shi X, Wei H, Chen Z, Wang J, Qu W, Huang Z, Dai C. 2021. Whole- brain monosynaptic inputs and outputs of</p><p>glutamatergic neurons of the vestibular nuclei complex in mice. Hearing Research 401:108159. DOI: https://</p><p>doi.org/10.1016/j.heares.2020.108159, PMID: 33401198</p><p>Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U. 2007. Trpv1 mediates histamine-</p><p>induced itching via the activation of phospholipase A2 and 12- lipoxygenase. Journal of Neuroscience 27:2331–</p><p>2337. DOI: https://doi.org/10.1523/JNEUROSCI.4643-06.2007, PMID: 17329430</p><p>Shin JW, Geerling JC, Loewy AD. 2008. Inputs to the ventrolateral bed nucleus of the stria terminalis. The</p><p>Journal of Comparative Neurology 511:628–657. DOI: https://doi.org/10.1002/cne.21870, PMID: 18853414</p><p>Shinnar S, Maciewicz RJ, Shofer RJ. 1975. A raphe projection to cat cerebellar cortex. Brain Research 97:139–</p><p>143. DOI: https://doi.org/10.1016/0006-8993(75)90921-X, PMID: 1175031</p><p>Shinozaki Y, Yokota S, Miwakeichi F, Pokorski M, Aoyama R, Fukuda K, Yoshida H, Toyama Y, Nakamura M,</p><p>Okada Y. 2019. Structural and functional identification of two distinct inspiratory neuronal populations at the</p><p>level of the phrenic nucleus in the rat cervical spinal cord. Brain Structure and Function 224:57–72. DOI:</p><p>https://doi.org/10.1007/s00429-018-1757-3, PMID: 30251026</p><p>Silva JN, Lucena EV, Silva TM, Damasceno RS, Takakura</p><p>AC, Moreira TS. 2016a. Inhibition of the pontine</p><p>Kölliker- fuse nucleus reduces genioglossal activity elicited by stimulation of the retrotrapezoid chemoreceptor</p><p>neurons. Neuroscience 328:9–21. DOI: https://doi.org/10.1016/j.neuroscience.2016.04.028, PMID: 27126558</p><p>Silva JN, Tanabe FM, Moreira TS, Takakura AC. 2016b. Neuroanatomical and physiological evidence that the</p><p>retrotrapezoid nucleus/parafacial region regulates expiration in adult rats. Respiratory Physiology &</p><p>Neurobiology 227:9–22. DOI: https://doi.org/10.1016/j.resp.2016.02.005, PMID: 26900003</p><p>Silva JN, Oliveira LM, Souza FC, Moreira TS, Takakura AC. 2019. Distinct pathways to the parafacial respiratory</p><p>group to trigger active expiration in adult rats. American Journal of Physiology- Lung Cellular and Molecular</p><p>Physiology 317:L402–L413. DOI: https://doi.org/10.1152/ajplung.00467.2018, PMID: 31242022</p><p>Simeone KA, Hallgren J, Bockman CS, Aggarwal A, Kansal V, Netzel L, Iyer SH, Matthews SA, Deodhar M,</p><p>Oldenburg PJ, Abel PW, Simeone TA. 2018. Respiratory dysfunction progresses with age in kcna1- null mice, a</p><p>model of sudden unexpected death in epilepsy. Epilepsia 59:345–357. DOI: https://doi.org/10.1111/epi.13971,</p><p>PMID: 29327348</p><p>Singh U, Jiang J, Saito K, Toth BA, Dickey JE, Rodeghiero SR, Deng Y, Deng G, Xue B, Zhu Z, Zingman LV,</p><p>Geerling JC, Cui H. 2022. Neuroanatomical organization and functional roles of PVN MC4R pathways in</p><p>physiological and behavioral regulations. Molecular Metabolism 55:101401. DOI: https://doi.org/10.1016/j.</p><p>molmet.2021.101401, PMID: 34823066</p><p>Smith JC, Morrison DE, Ellenberger HH, Otto MR, Feldman JL. 1989. Brainstem projections to the major</p><p>respiratory neuron populations in the medulla of the cat. The Journal of Comparative Neurology 281:69–96.</p><p>DOI: https://doi.org/10.1002/cne.902810107, PMID: 2466879</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1038/nature14600</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26131933</p><p>https://doi.org/10.1093/brain/awq327</p><p>https://doi.org/10.1093/brain/awq327</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21115469</p><p>https://doi.org/10.1136/jnnp.2005.068601</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16354739</p><p>https://doi.org/10.1002/cne.903230307</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1281170</p><p>https://doi.org/10.1007/s00429-014-0840-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25009313</p><p>https://doi.org/10.1002/jts.21936</p><p>https://doi.org/10.1002/jts.21936</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25158633</p><p>https://doi.org/10.1152/physrev.00016.2014</p><p>https://doi.org/10.1152/physrev.00016.2014</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25540142</p><p>https://doi.org/10.1038/nn1130</p><p>http://www.ncbi.nlm.nih.gov/pubmed/14517544</p><p>https://doi.org/10.1016/0034-5687(81)90018-9</p><p>https://doi.org/10.1016/0034-5687(81)90018-9</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6460305</p><p>https://doi.org/10.1038/nn.3938</p><p>https://doi.org/10.1038/nn.3938</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25643296</p><p>https://doi.org/10.1523/JNEUROSCI.2055-17.2017</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29066557</p><p>https://doi.org/10.1016/j.heares.2020.108159</p><p>https://doi.org/10.1016/j.heares.2020.108159</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33401198</p><p>https://doi.org/10.1523/JNEUROSCI.4643-06.2007</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17329430</p><p>https://doi.org/10.1002/cne.21870</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18853414</p><p>https://doi.org/10.1016/0006-8993(75)90921-X</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1175031</p><p>https://doi.org/10.1007/s00429-018-1757-3</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30251026</p><p>https://doi.org/10.1016/j.neuroscience.2016.04.028</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27126558</p><p>https://doi.org/10.1016/j.resp.2016.02.005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26900003</p><p>https://doi.org/10.1152/ajplung.00467.2018</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31242022</p><p>https://doi.org/10.1111/epi.13971</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29327348</p><p>https://doi.org/10.1016/j.molmet.2021.101401</p><p>https://doi.org/10.1016/j.molmet.2021.101401</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34823066</p><p>https://doi.org/10.1002/cne.902810107</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2466879</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 61 of 67</p><p>Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. 1991. Pre- Bötzinger complex: a brainstem region</p><p>that may generate respiratory rhythm in mammals. Science 254:726–729. DOI: https://doi.org/10.1126/</p><p>science.1683005, PMID: 1683005</p><p>Smith HR, Leibold NK, Rappoport DA, Ginapp CM, Purnell BS, Bode NM, Alberico SL, Kim YC, Audero E,</p><p>Gross CT, Buchanan GF. 2018. Dorsal raphe serotonin neurons mediate CO2- induced arousal from sleep. The</p><p>Journal of Neuroscience 38:1915–1925. DOI: https://doi.org/10.1523/JNEUROSCI.2182-17.2018, PMID:</p><p>29378860</p><p>Sobrinho CR, Kuo FS, Barna BF, Moreira TS, Mulkey DK. 2016. Cholinergic control of ventral surface</p><p>chemoreceptors involves gq/inositol 1,4,5- trisphosphate- mediated inhibition of KCNQ channels. The Journal of</p><p>Physiology 594:407–419. DOI: https://doi.org/10.1113/JP271761, PMID: 26572090</p><p>Somana R, Walberg F. 1979a. Cerebellar afferents from the nucleus of the solitary tract. Neuroscience Letters</p><p>11:41–47. DOI: https://doi.org/10.1016/0304-3940(79)90053-3, PMID: 431884</p><p>Somana R, Walberg F. 1979b. The cerebellar projection from the paratrigeminal nucleus in the cat. Neuroscience</p><p>Letters 15:49–54. DOI: https://doi.org/10.1016/0304-3940(79)91528-3, PMID: 530516</p><p>Song G, Yu Y, Poon CS. 2006. Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory</p><p>information in the rat. The Journal of Neuroscience 26:300–310. DOI: https://doi.org/10.1523/JNEUROSCI.</p><p>3029-05.2006, PMID: 16399700</p><p>Song G, Wang H, Xu H, Poon CS. 2012a. Kölliker–fuse neurons send collateral projections to multiple hypoxia-</p><p>activated and nonactivated structures in rat brainstem and spinal cord. Brain Structure & Function 217:835–</p><p>858. DOI: https://doi.org/10.1007/s00429-012-0384-7, PMID: 22286911</p><p>Song N, Zhang G, Geng W, Liu Z, Jin W, Li L, Cao Y, Zhu D, Yu J, Shen L. 2012b. Acid sensing ion channel 1 in</p><p>lateral hypothalamus contributes to breathing control. PLOS ONE 7:e39982. DOI: https://doi.org/10.1371/</p><p>journal.pone.0039982, PMID: 22792205</p><p>Souza G, Stornetta RL, Stornetta DS, Abbott SBG, Guyenet PG. 2020. Differential contribution of the</p><p>retrotrapezoid nucleus and C1 neurons to active expiration and arousal in rats. The Journal of Neuroscience</p><p>40:8683–8697. DOI: https://doi.org/10.1523/JNEUROSCI.1006-20.2020, PMID: 32973046</p><p>Speck DF, Feldman JL. 1982. The effects of microstimulation and microlesions in the ventral and dorsal</p><p>respiratory groups in medulla of cat. The Journal of Neuroscience 2:744–757. DOI: https://doi.org/10.1523/</p><p>JNEUROSCI.02-06-00744.1982, PMID: 6283041</p><p>Sriranjini SJ, Pal PK, Krishna N, Sathyaprabha TN. 2010. Subclinical pulmonary dysfunction in spinocerebellar</p><p>ataxias 1, 2 and 3. Acta Neurologica Scandinavica 122:323–328. DOI: https://doi.org/10.1111/j.1600-0404.</p><p>2009.01306.x, PMID: 20002004</p><p>Stahl WR. 1967. Scaling of respiratory variables in mammals. Journal of Applied Physiology 22:453–460. DOI:</p><p>https://doi.org/10.1152/jappl.1967.22.3.453, PMID: 6020227</p><p>Steininger TL, Rye DB, Wainer BH. 1992. Afferent projections to the cholinergic pedunculopontine tegmental</p><p>nucleus and adjacent midbrain extrapyramidal area in the albino rat. i. retrograde tracing studies. The</p><p>Journal of Comparative Neurology 321:515–543. DOI: https://doi.org/10.1002/cne.903210403, PMID:</p><p>1380518</p><p>Strohl KP. 1985. Respiratory activation of the facial nerve and alar muscles in anaesthetized dogs. The Journal of</p><p>Physiology 363:351–362. DOI: https://doi.org/10.1113/jphysiol.1985.sp015715, PMID: 3926993</p><p>Suarez- Roca H, Mamoun N, Sigurdson MI, Maixner W. 2021. Baroreceptor modulation of the cardiovascular</p><p>system, pain, consciousness, and cognition. Comprehensive Physiology 11:1373–1423. DOI: https://doi.org/10.</p><p>1002/cphy.c190038, PMID: 33577130</p><p>Subramanian HH, Chow CM, Balnave RJ. 2007. Identification of different types of respiratory neurones in the</p><p>dorsal brainstem nucleus tractus solitarius of the rat.</p><p>Brain Research 1141:119–132. DOI: https://doi.org/10.</p><p>1016/j.brainres.2007.01.013, PMID: 17291467</p><p>Subramanian HH, Balnave RJ, Holstege G. 2008. The midbrain periaqueductal gray control of respiration. The</p><p>Journal of Neuroscience 28:12274–12283. DOI: https://doi.org/10.1523/JNEUROSCI.4168-08.2008, PMID:</p><p>19020021</p><p>Subramanian HH, Holstege G. 2009. The nucleus retroambiguus control of respiration. The Journal of</p><p>Neuroscience 29:3824–3832. DOI: https://doi.org/10.1523/JNEUROSCI.0607-09.2009, PMID: 19321779</p><p>Subramanian HH. 2013. Descending control of the respiratory neuronal network by the midbrain periaqueductal</p><p>grey in the rat in vivo. The Journal of Physiology 591:109–122. DOI: https://doi.org/10.1113/jphysiol.2012.</p><p>245217, PMID: 23129795</p><p>Subramanian HH, Balnave RJ, Holstege G. 2021. Microstimulation in different parts of the periaqueductal gray</p><p>generates different types of vocalizations in the cat. Journal of Voice 35:804. DOI: https://doi.org/10.1016/j.</p><p>jvoice.2020.01.022, PMID: 32147316</p><p>Suess WM, Alexander AB, Smith DD, Sweeney HW, Marion RJ. 1980. The effects of psychological stress on</p><p>respiration: a preliminary study of anxiety and hyperventilation. Psychophysiology 17:535–540. DOI: https://</p><p>doi.org/10.1111/j.1469-8986.1980.tb02293.x, PMID: 7443919</p><p>Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D. 2009. Projection of reconstructed single purkinje cell axons in</p><p>relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. The Journal of Comparative</p><p>Neurology 512:282–304. DOI: https://doi.org/10.1002/cne.21889, PMID: 19003905</p><p>Summ O, Hassanpour N, Mathys C, Groß M. 2022. Disordered breathing in severe cerebral illness - towards a</p><p>conceptual framework. Respiratory Physiology & Neurobiology 300:103869. DOI: https://doi.org/10.1016/j.</p><p>resp.2022.103869, PMID: 35181538</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1126/science.1683005</p><p>https://doi.org/10.1126/science.1683005</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1683005</p><p>https://doi.org/10.1523/JNEUROSCI.2182-17.2018</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29378860</p><p>https://doi.org/10.1113/JP271761</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26572090</p><p>https://doi.org/10.1016/0304-3940(79)90053-3</p><p>http://www.ncbi.nlm.nih.gov/pubmed/431884</p><p>https://doi.org/10.1016/0304-3940(79)91528-3</p><p>http://www.ncbi.nlm.nih.gov/pubmed/530516</p><p>https://doi.org/10.1523/JNEUROSCI.3029-05.2006</p><p>https://doi.org/10.1523/JNEUROSCI.3029-05.2006</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16399700</p><p>https://doi.org/10.1007/s00429-012-0384-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22286911</p><p>https://doi.org/10.1371/journal.pone.0039982</p><p>https://doi.org/10.1371/journal.pone.0039982</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22792205</p><p>https://doi.org/10.1523/JNEUROSCI.1006-20.2020</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32973046</p><p>https://doi.org/10.1523/JNEUROSCI.02-06-00744.1982</p><p>https://doi.org/10.1523/JNEUROSCI.02-06-00744.1982</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6283041</p><p>https://doi.org/10.1111/j.1600-0404.2009.01306.x</p><p>https://doi.org/10.1111/j.1600-0404.2009.01306.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20002004</p><p>https://doi.org/10.1152/jappl.1967.22.3.453</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6020227</p><p>https://doi.org/10.1002/cne.903210403</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1380518</p><p>https://doi.org/10.1113/jphysiol.1985.sp015715</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3926993</p><p>https://doi.org/10.1002/cphy.c190038</p><p>https://doi.org/10.1002/cphy.c190038</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33577130</p><p>https://doi.org/10.1016/j.brainres.2007.01.013</p><p>https://doi.org/10.1016/j.brainres.2007.01.013</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17291467</p><p>https://doi.org/10.1523/JNEUROSCI.4168-08.2008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19020021</p><p>https://doi.org/10.1523/JNEUROSCI.0607-09.2009</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19321779</p><p>https://doi.org/10.1113/jphysiol.2012.245217</p><p>https://doi.org/10.1113/jphysiol.2012.245217</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23129795</p><p>https://doi.org/10.1016/j.jvoice.2020.01.022</p><p>https://doi.org/10.1016/j.jvoice.2020.01.022</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32147316</p><p>https://doi.org/10.1111/j.1469-8986.1980.tb02293.x</p><p>https://doi.org/10.1111/j.1469-8986.1980.tb02293.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7443919</p><p>https://doi.org/10.1002/cne.21889</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19003905</p><p>https://doi.org/10.1016/j.resp.2022.103869</p><p>https://doi.org/10.1016/j.resp.2022.103869</p><p>http://www.ncbi.nlm.nih.gov/pubmed/35181538</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 62 of 67</p><p>Swenson RS, Castro AJ. 1983a. The afferent connections of the inferior olivary complex in rats an anterograde</p><p>study using autoradiographic and axonal degeneration techniques. Neuroscience 8:259–275. DOI: https://doi.</p><p>org/10.1016/0306-4522(83)90064-7, PMID: 6843823</p><p>Swenson RS, Castro AJ. 1983b. The afferent connections of the inferior olivary complex in rats: a study using the</p><p>retrograde transport of horseradish peroxidase. The American Journal of Anatomy 166:329–341. DOI: https://</p><p>doi.org/10.1002/aja.1001660307, PMID: 6846209</p><p>Sykes DL, Morice AH. 2021. The cough reflex: the janus of respiratory medicine. Frontiers in Physiology</p><p>12:684080. DOI: https://doi.org/10.3389/fphys.2021.684080, PMID: 34267675</p><p>Szabadi E. 2013. Functional neuroanatomy of the central noradrenergic system. Journal of Psychopharmacology</p><p>27:659–693. DOI: https://doi.org/10.1177/0269881113490326, PMID: 23761387</p><p>Szentágothai J, Rajkovits K. 1959. Über den ursprung der kletterfasern des kleinhirns. Zeitschrift Fur Anatomie</p><p>Und Entwicklungsgeschichte 121:130–141. DOI: https://doi.org/10.1007/BF00525203</p><p>Szulczewski MT. 2019. Training of paced breathing at 0.1 hz improves CO2 homeostasis and relaxation during a</p><p>paced breathing task. PLOS ONE 14:e0218550. DOI: https://doi.org/10.1371/journal.pone.0218550, PMID:</p><p>31220170</p><p>Takatoh J, Prevosto V, Thompson PM, Lu J, Chung L, Harrahill A, Li S, Zhao S, He Z, Golomb D, Kleinfeld D,</p><p>Wang F. 2022. The whisking oscillator circuit. Nature 609:560–568. DOI: https://doi.org/10.1038/s41586-022-</p><p>05144-8, PMID: 36045290</p><p>Takei A, Hamada T, Yabe I, Sasaki H. 2005. Treatment of cerebellar ataxia with 5- HT1A agonist. Cerebellum</p><p>4:211–215. DOI: https://doi.org/10.1080/14734220500222318, PMID: 16147954</p><p>Tan W, Janczewski WA, Yang P, Shao XM, Callaway EM, Feldman JL. 2008. Silencing prebötzinger complex</p><p>somatostatin- expressing neurons induces persistent apnea in awake rat. Nature Neuroscience 11:538–540.</p><p>DOI: https://doi.org/10.1038/nn.2104, PMID: 18391943</p><p>Tan W, Pagliardini S, Yang P, Janczewski WA, Feldman JL. 2010. Projections of prebötzinger complex neurons in</p><p>adult rats. The Journal of Comparative Neurology 518:1862–1878. DOI: https://doi.org/10.1002/cne.22308,</p><p>PMID: 20235095</p><p>Tanaka Y, Hirai N. 1994. Physiological studies of thoracic spinocerebellar tract neurons in relation to respiratory</p><p>movement. Neuroscience Research 19:317–326. DOI: https://doi.org/10.1016/0168-0102(94)90044-2, PMID:</p><p>8058207</p><p>Tarulli AW, Lim C, Bui JD, Saper CB, Alexander MP. 2005. Central neurogenic hyperventilation: a case report and</p><p>discussion of pathophysiology. Archives of Neurology 62:1632–1634. DOI: https://doi.org/10.1001/archneur.</p><p>62.10.1632, PMID: 16216951</p><p>Tatar M, Hanacek J, Widdicombe J. 2008. The expiration reflex from the trachea and bronchi. The European</p><p>Respiratory Journal 31:385–390. DOI: https://doi.org/10.1183/09031936.00063507, PMID: 17959638</p><p>Taugher RJ, Lu Y, Wang Y, Kreple CJ, Ghobbeh A, Fan R, Sowers LP, Wemmie JA. 2014. The bed nucleus of the</p><p>stria terminalis is critical for anxiety- related behavior evoked by CO2 and acidosis. The Journal of Neuroscience</p><p>34:10247–10255. DOI: https://doi.org/10.1523/JNEUROSCI.1680-14.2014, PMID: 25080586</p><p>Taugher RJ, Ghobbeh A, Sowers LP, Fan R, Wemmie JA. 2015. ASIC1A in the bed nucleus of the stria terminalis</p><p>mediates TMT- evoked freezing. Frontiers in Neuroscience 9:239. DOI: https://doi.org/10.3389/fnins.2015.</p><p>00239, PMID: 26257596</p><p>Taylor NC, Li A, Nattie EE. 2005. Medullary serotonergic neurones modulate</p><p>the ventilatory response to</p><p>hypercapnia, but not hypoxia in conscious rats. The Journal of Physiology 566:543–557. DOI: https://doi.org/</p><p>10.1113/jphysiol.2005.083873, PMID: 15878953</p><p>Taylor AP, Lee AS, Goedecke PJ, Tolley EA, Joyner AL, Heck DH. 2022. Conditional loss of engrailed1/2 in</p><p>atoh1- derived excitatory cerebellar nuclear neurons impairs eupneic respiration in mice. Genes, Brain, and</p><p>Behavior 21:e12788. DOI: https://doi.org/10.1111/gbb.12788, PMID: 35044072</p><p>Teran FA, Massey CA, Richerson GB. 2014. Serotonin neurons and central respiratory chemoreception: where are</p><p>we now? Progress in Brain Research 209:207–233. DOI: https://doi.org/10.1016/B978-0-444-63274-6.00011-4,</p><p>PMID: 24746050</p><p>Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. 2000. Topography of cerebellar nuclear</p><p>projections to the brain stem in the rat. Progress in Brain Research 124:141–172. DOI: https://doi.org/10.1016/</p><p>S0079-6123(00)24014-4, PMID: 10943123</p><p>Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM. 2000.</p><p>Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474. DOI: https://doi.org/10.</p><p>1016/s0896-6273(00)00058-1, PMID: 11055430</p><p>Thoby- Brisson M, Karlén M, Wu N, Charnay P, Champagnat J, Fortin G. 2009. Genetic identification of an</p><p>embryonic parafacial oscillator coupling to the prebötzinger complex. Nature Neuroscience 12:1028–1035.</p><p>DOI: https://doi.org/10.1038/nn.2354, PMID: 19578380</p><p>Thompson RH, Canteras NS, Swanson LW. 1996. Organization of projections from the dorsomedial nucleus of</p><p>the hypothalamus: a PHA- L study in the rat. The Journal of Comparative Neurology 376:143–173. DOI: https://</p><p>doi.org/10.1002/(SICI)1096-9861(19961202)376:1<143::AID-CNE9>3.0.CO;2-3, PMID: 8946289</p><p>Thompson RH, Swanson LW. 1998. Organization of inputs to the dorsomedial nucleus of the hypothalamus: a</p><p>reexamination with fluorogold and PHAL in the rat. Brain Research. Brain Research Reviews 27:89–118. DOI:</p><p>https://doi.org/10.1016/s0165-0173(98)00010-1, PMID: 9622601</p><p>Tian GF, Duffin J. 1996. Spinal connections of ventral- group bulbospinal inspiratory neurons studied with</p><p>cross- correlation in the decerebrate rat. Experimental Brain Research 111:178–186. DOI: https://doi.org/10.</p><p>1007/BF00227296, PMID: 8891649</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1016/0306-4522(83)90064-7</p><p>https://doi.org/10.1016/0306-4522(83)90064-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6843823</p><p>https://doi.org/10.1002/aja.1001660307</p><p>https://doi.org/10.1002/aja.1001660307</p><p>http://www.ncbi.nlm.nih.gov/pubmed/6846209</p><p>https://doi.org/10.3389/fphys.2021.684080</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34267675</p><p>https://doi.org/10.1177/0269881113490326</p><p>http://www.ncbi.nlm.nih.gov/pubmed/23761387</p><p>https://doi.org/10.1007/BF00525203</p><p>https://doi.org/10.1371/journal.pone.0218550</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31220170</p><p>https://doi.org/10.1038/s41586-022-05144-8</p><p>https://doi.org/10.1038/s41586-022-05144-8</p><p>http://www.ncbi.nlm.nih.gov/pubmed/36045290</p><p>https://doi.org/10.1080/14734220500222318</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16147954</p><p>https://doi.org/10.1038/nn.2104</p><p>http://www.ncbi.nlm.nih.gov/pubmed/18391943</p><p>https://doi.org/10.1002/cne.22308</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20235095</p><p>https://doi.org/10.1016/0168-0102(94)90044-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8058207</p><p>https://doi.org/10.1001/archneur.62.10.1632</p><p>https://doi.org/10.1001/archneur.62.10.1632</p><p>http://www.ncbi.nlm.nih.gov/pubmed/16216951</p><p>https://doi.org/10.1183/09031936.00063507</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17959638</p><p>https://doi.org/10.1523/JNEUROSCI.1680-14.2014</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25080586</p><p>https://doi.org/10.3389/fnins.2015.00239</p><p>https://doi.org/10.3389/fnins.2015.00239</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26257596</p><p>https://doi.org/10.1113/jphysiol.2005.083873</p><p>https://doi.org/10.1113/jphysiol.2005.083873</p><p>http://www.ncbi.nlm.nih.gov/pubmed/15878953</p><p>https://doi.org/10.1111/gbb.12788</p><p>http://www.ncbi.nlm.nih.gov/pubmed/35044072</p><p>https://doi.org/10.1016/B978-0-444-63274-6.00011-4</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24746050</p><p>https://doi.org/10.1016/S0079-6123(00)24014-4</p><p>https://doi.org/10.1016/S0079-6123(00)24014-4</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10943123</p><p>https://doi.org/10.1016/s0896-6273(00)00058-1</p><p>https://doi.org/10.1016/s0896-6273(00)00058-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11055430</p><p>https://doi.org/10.1038/nn.2354</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19578380</p><p>https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1<143::AID-CNE9>3.0.CO;2-3</p><p>https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1<143::AID-CNE9>3.0.CO;2-3</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8946289</p><p>https://doi.org/10.1016/s0165-0173(98)00010-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9622601</p><p>https://doi.org/10.1007/BF00227296</p><p>https://doi.org/10.1007/BF00227296</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8891649</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 63 of 67</p><p>Tian GF, Peever JH, Duffin J. 1998. Bötzinger- complex expiratory neurons monosynaptically inhibit phrenic</p><p>motoneurons in the decerebrate rat. Experimental Brain Research 122:149–156. DOI: https://doi.org/10.1007/</p><p>s002210050502, PMID: 9776513</p><p>Tokita K, Inoue T, Boughter JD. 2010. Subnuclear organization of parabrachial efferents to the thalamus,</p><p>amygdala and lateral hypothalamus in C57BL/6J mice: a quantitative retrograde double labeling study.</p><p>Neuroscience 171:351–365. DOI: https://doi.org/10.1016/j.neuroscience.2010.08.026, PMID: 20832453</p><p>Tolbert DL, Bantli H, Bloedel JR. 1977. The intracerebellar nucleocortical projection in a primate. Experimental</p><p>Brain Research 30:425–434. DOI: https://doi.org/10.1007/BF00237266, PMID: 413728</p><p>Toor R, Sun QJ, Kumar NN, Le S, Hildreth CM, Phillips JK, McMullan S. 2019. Neurons in the intermediate</p><p>reticular nucleus coordinate postinspiratory activity, swallowing, and respiratory- sympathetic coupling in the</p><p>rat. The Journal of Neuroscience 39:9757–9766. DOI: https://doi.org/10.1523/JNEUROSCI.0502-19.2019,</p><p>PMID: 31666354</p><p>Topchiy I, Waxman J, Radulovacki M, Carley DW. 2010. Functional topography of respiratory, cardiovascular and</p><p>pontine- wave responses to glutamate microstimulation of the pedunculopontine tegmentum of the rat.</p><p>Respiratory Physiology & Neurobiology 173:64–70. DOI: https://doi.org/10.1016/j.resp.2010.06.006, PMID:</p><p>20601208</p><p>Torrealba F, Müller C. 1996. Glutamate immunoreactivity of insular cortex afferents to the nucleus tractus</p><p>solitarius in the rat: a quantitative electron microscopic study. Neuroscience 71:77–87. DOI: https://doi.org/10.</p><p>1016/0306-4522(95)00426-2, PMID: 8834393</p><p>Torres- Tamayo N, García- Martínez D, Lois Zlolniski S, Torres- Sánchez I, García- Río F, Bastir M. 2018. 3D analysis</p><p>of sexual dimorphism in size, shape and breathing kinematics of human lungs. Journal of Anatomy 232:227–</p><p>237. DOI: https://doi.org/10.1111/joa.12743, PMID: 29148039</p><p>Tort ABL, Ponsel S, Jessberger J, Yanovsky Y, Brankačk J, Draguhn A. 2018. Parallel detection of theta and</p><p>respiration- coupled oscillations throughout the mouse brain. Scientific Reports 8:6432. DOI: https://doi.org/10.</p><p>1038/s41598-018-24629-z, PMID: 29691421</p><p>Trevizan- Baú P, Dhingra RR, Furuya WI, Stanić D, Mazzone SB, Dutschmann M. 2021a. Forebrain projection</p><p>neurons target functionally diverse respiratory control areas in the midbrain, pons, and medulla oblongata.</p><p>The Journal of Comparative Neurology 529:2243–2264. DOI: https://doi.org/10.1002/cne.25091, PMID:</p><p>33340092</p><p>Trevizan- Baú P, Furuya WI, Mazzone SB, Stanić D, Dhingra RR, Dutschmann M. 2021b. Reciprocal connectivity of</p><p>the periaqueductal gray with the ponto- medullary respiratory network in rat. Brain Research 1757:147255.</p><p>DOI: https://doi.org/10.1016/j.brainres.2020.147255, PMID: 33515533</p><p>Tsitsopoulos PP, Tobieson L, Enblad P, Marklund N. 2012. Prognostic factors and long- term outcome following</p><p>surgical treatment of 76 patients with spontaneous cerebellar haematoma. Acta Neurochirurgica 154:1189–</p><p>1195. DOI: https://doi.org/10.1007/s00701-012-1372-7,</p><p>PMID: 22619023</p><p>Turovsky E, Theparambil SM, Kasymov V, Deitmer JW, Del Arroyo AG, Ackland GL, Corneveaux JJ, Allen AN,</p><p>Huentelman MJ, Kasparov S, Marina N, Gourine AV. 2016. Mechanisms of CO2/H+ sensitivity of astrocytes. The</p><p>Journal of Neuroscience 36:10750–10758. DOI: https://doi.org/10.1523/JNEUROSCI.1281-16.2016, PMID:</p><p>27798130</p><p>Umans BD, Liberles SD. 2018. Neural sensing of organ volume. Trends in Neurosciences 41:911–924. DOI:</p><p>https://doi.org/10.1016/j.tins.2018.07.008, PMID: 30143276</p><p>Umezaki T, Zheng Y, Shiba K, Miller AD. 1997. Role of nucleus retroambigualis in respiratory reflexes evoked by</p><p>superior laryngeal and vestibular nerve afferents and in emesis. Brain Research 769:347–356. DOI: https://doi.</p><p>org/10.1016/s0006-8993(97)00756-7, PMID: 9374205</p><p>Vaiman M, Eviatar E, Segal S. 2003. Intranasal electromyography in evaluation of the nasal valve. Rhinology</p><p>41:134–141 PMID: 14579653.</p><p>van der Heijden ME, Zoghbi HY. 2020. Development of the brainstem respiratory circuit. Wiley Interdisciplinary</p><p>Reviews. Developmental Biology 9:e366. DOI: https://doi.org/10.1002/wdev.366, PMID: 31816185</p><p>VanderHorst VG, Terasawa E, Ralston HJ, Holstege G. 2000. Monosynaptic projections from the lateral</p><p>periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: implications for vocalization and</p><p>reproductive behavior. The Journal of Comparative Neurology 424:251–268. DOI: https://doi.org/10.1002/</p><p>1096-9861(20000821)424:2<251::aid-cne5>3.0.co;2-d, PMID: 10906701</p><p>van der Want JJL, Gerrits NM, Voogd J. 1987. Autoradiography of mossy fiber terminals in the fastigial nucleus</p><p>of the cat. The Journal of Comparative Neurology 258:70–80. DOI: https://doi.org/10.1002/cne.902580105,</p><p>PMID: 3571537</p><p>van de Wiel J, Meigh L, Bhandare A, Cook J, Nijjar S, Huckstepp R, Dale N. 2020. Connexin26 mediates</p><p>CO2- dependent regulation of breathing via glial cells of the medulla oblongata. Communications Biology</p><p>3:521. DOI: https://doi.org/10.1038/s42003-020-01248-x, PMID: 32958814</p><p>van Dishoeck HAE. 1937. Elektrogramm der nasenflügelmuskeln und nasenwiderstandskurve. Acta Oto-</p><p>Laryngologica 25:285–295. DOI: https://doi.org/10.3109/00016483709127966</p><p>Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K,</p><p>Weng FJ, Lin Y, Wilson MA, Brown EN. 2015. Optogenetic activation of cholinergic neurons in the PPT or LDT</p><p>induces REM sleep. PNAS 112:584–589. DOI: https://doi.org/10.1073/pnas.1423136112, PMID: 25548191</p><p>Van Ham JJ, Yeo CH. 1992. Somatosensory trigeminal projections to the inferior olive, cerebellum and other</p><p>precerebellar nuclei in rabbits. The European Journal of Neuroscience 4:302–317. DOI: https://doi.org/10.</p><p>1111/j.1460-9568.1992.tb00878.x, PMID: 12106357</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1007/s002210050502</p><p>https://doi.org/10.1007/s002210050502</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9776513</p><p>https://doi.org/10.1016/j.neuroscience.2010.08.026</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20832453</p><p>https://doi.org/10.1007/BF00237266</p><p>http://www.ncbi.nlm.nih.gov/pubmed/413728</p><p>https://doi.org/10.1523/JNEUROSCI.0502-19.2019</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31666354</p><p>https://doi.org/10.1016/j.resp.2010.06.006</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20601208</p><p>https://doi.org/10.1016/0306-4522(95)00426-2</p><p>https://doi.org/10.1016/0306-4522(95)00426-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8834393</p><p>https://doi.org/10.1111/joa.12743</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29148039</p><p>https://doi.org/10.1038/s41598-018-24629-z</p><p>https://doi.org/10.1038/s41598-018-24629-z</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29691421</p><p>https://doi.org/10.1002/cne.25091</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33340092</p><p>https://doi.org/10.1016/j.brainres.2020.147255</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33515533</p><p>https://doi.org/10.1007/s00701-012-1372-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/22619023</p><p>https://doi.org/10.1523/JNEUROSCI.1281-16.2016</p><p>http://www.ncbi.nlm.nih.gov/pubmed/27798130</p><p>https://doi.org/10.1016/j.tins.2018.07.008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30143276</p><p>https://doi.org/10.1016/s0006-8993(97)00756-7</p><p>https://doi.org/10.1016/s0006-8993(97)00756-7</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9374205</p><p>http://www.ncbi.nlm.nih.gov/pubmed/14579653</p><p>https://doi.org/10.1002/wdev.366</p><p>http://www.ncbi.nlm.nih.gov/pubmed/31816185</p><p>https://doi.org/10.1002/1096-9861(20000821)424:2<251::aid-cne5>3.0.co;2-d</p><p>https://doi.org/10.1002/1096-9861(20000821)424:2<251::aid-cne5>3.0.co;2-d</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10906701</p><p>https://doi.org/10.1002/cne.902580105</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3571537</p><p>https://doi.org/10.1038/s42003-020-01248-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32958814</p><p>https://doi.org/10.3109/00016483709127966</p><p>https://doi.org/10.1073/pnas.1423136112</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25548191</p><p>https://doi.org/10.1111/j.1460-9568.1992.tb00878.x</p><p>https://doi.org/10.1111/j.1460-9568.1992.tb00878.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12106357</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 64 of 67</p><p>VanderHorst V, Terasawa E, Ralston HJ. 2001. Monosynaptic projections from the nucleus retroambiguus region</p><p>to laryngeal motoneurons in the rhesus monkey. Neuroscience 107:117–125. DOI: https://doi.org/10.1016/</p><p>S0306-4522(01)00343-8</p><p>van Woerden GM, Hoebeek FE, Gao Z, Nagaraja RY, Hoogenraad CC, Kushner SA, Hansel C, De Zeeuw CI,</p><p>Elgersma Y. 2009. βCaMKII controls the direction of plasticity at parallel fiber- Purkinje cell synapses. Nature</p><p>Neuroscience 12:823–825. DOI: https://doi.org/10.1038/nn.2329, PMID: 19503086</p><p>Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. 2021. Neurochemistry of the Kölliker- fuse nucleus from a</p><p>respiratory perspective. Journal of Neurochemistry 156:16–37. DOI: https://doi.org/10.1111/jnc.15041, PMID:</p><p>32396650</p><p>Vasudeva RK, Lin RCS, Simpson KL, Waterhouse BD. 2011. Functional organization of the dorsal raphe efferent</p><p>system with special consideration of nitrergic cell groups. Journal of Chemical Neuroanatomy 41:281–293.</p><p>DOI: https://doi.org/10.1016/j.jchemneu.2011.05.008</p><p>Verhagen JV, Wesson DW, Netoff TI, White JA, Wachowiak M. 2007. Sniffing controls an adaptive filter of</p><p>sensory input to the olfactory bulb. Nature Neuroscience 10:631–639. DOI: https://doi.org/10.1038/nn1892</p><p>Vertes RP. 1991. A PHA- L analysis of ascending projections of the dorsal raphe nucleus in the rat. The Journal of</p><p>Comparative Neurology 313:643–668. DOI: https://doi.org/10.1002/cne.903130409, PMID: 1783685</p><p>Vitale F, Mattei C, Capozzo A, Pietrantoni I, Mazzone P, Scarnati E. 2016. Cholinergic excitation from the</p><p>pedunculopontine tegmental nucleus to the dentate nucleus in the rat. Neuroscience 317:12–22. DOI: https://</p><p>doi.org/10.1016/j.neuroscience.2015.12.055, PMID: 26762800</p><p>von Euler C, Marttila I, Remmers JE, Trippenbach T. 1976. Effects of lesions in the parabrachial nucleus on the</p><p>mechanisms for central and reflex termination of inspiration in the cat. Acta Physiologica Scandinavica</p><p>96:324–337. DOI: https://doi.org/10.1111/j.1748-1716.1976.tb10203.x, PMID: 1274615</p><p>Voogd J, Glickstein M. 1998. The anatomy of the cerebellum. Trends in Neurosciences 21:370–375. DOI: https://</p><p>doi.org/10.1016/s0166-2236(98)01318-6, PMID: 9735944</p><p>Walker DL, Toufexis DJ, Davis M. 2003. Role of the bed nucleus of the stria terminalis versus the amygdala in</p><p>fear, stress, and anxiety. European Journal of Pharmacology 463:199–216. DOI: https://doi.org/10.1016/</p><p>s0014-2999(03)01282-2, PMID: 12600711</p><p>Walker JM, Farney RJ, Rhondeau SM, Boyle KM, Valentine K, Cloward TV, Shilling KC. 2007. Chronic opioid use</p><p>is a risk factor for the development of central sleep apnea and ataxic breathing. Journal of Clinical Sleep</p><p>Medicine 3:455–461. DOI: https://doi.org/10.5664/jcsm.26908, PMID: 17803007</p><p>Wallen- Mackenzie A, Gezelius H, Thoby- Brisson M, Nygard A, Enjin A, Fujiyama F, Fortin G, Kullander K. 2006.</p><p>Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor</p><p>central pattern generation. Journal of Neuroscience</p><p>26:12294–12307. DOI: https://doi.org/10.1523/</p><p>JNEUROSCI.3855-06.2006, PMID: 17122055</p><p>Wang W, Pizzonia JH, Richerson GB. 1998. Chemosensitivity of rat medullary raphe neurones in primary tissue</p><p>culture. The Journal of Physiology 511 ( Pt 2):433–450. DOI: https://doi.org/10.1111/j.1469-7793.1998.433bh.</p><p>x, PMID: 9706021</p><p>Wang W, Tiwari JK, Bradley SR, Zaykin RV, Richerson GB. 2001. Acidosis- stimulated neurons of the medullary</p><p>raphe are serotonergic. Journal of Neurophysiology 85:2224–2235. DOI: https://doi.org/10.1152/jn.2001.85.5.</p><p>2224, PMID: 11353037</p><p>Wang X, Guan R, Zhao X, Zhu D, Song N, Shen L. 2018. Task1 and TASK3 are coexpressed with ASIC1 in the</p><p>ventrolateral medulla and contribute to central chemoreception in rats. Frontiers in Cellular Neuroscience</p><p>12:285. DOI: https://doi.org/10.3389/fncel.2018.00285, PMID: 30210304</p><p>Wang X, Guan R, Zhao X, Chen J, Zhu D, Shen L, Song N. 2021. TASK1 and TASK3 in orexin neuron of lateral</p><p>hypothalamus contribute to respiratory chemoreflex by projecting to nucleus tractus solitarius. FASEB Journal</p><p>35:e21532. DOI: https://doi.org/10.1096/fj.202002189R, PMID: 33817828</p><p>Wang X, Novello M, Gao Z, Ruigrok TJH, De Zeeuw CI. 2022. Input and output organization of the</p><p>mesodiencephalic junction for cerebro- cerebellar communication. Journal of Neuroscience Research 100:620–</p><p>637. DOI: https://doi.org/10.1002/jnr.24993, PMID: 34850425</p><p>Watson AHD, Williams C, James BV. 2012. Activity patterns in latissimus dorsi and sternocleidomastoid in</p><p>classical singers. Journal of Voice 26:e95–e105. DOI: https://doi.org/10.1016/j.jvoice.2011.04.008, PMID:</p><p>21724365</p><p>Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L. 2014. Presynaptic partners of dorsal</p><p>raphe serotonergic and gabaergic neurons. Neuron 83:645–662. DOI: https://doi.org/10.1016/j.neuron.2014.</p><p>06.024, PMID: 25102560</p><p>Welch JF, Kipp S, Sheel AW. 2019. Respiratory muscles during exercise: mechanics, energetics, and fatigue.</p><p>Current Opinion in Physiology 10:102–109. DOI: https://doi.org/10.1016/j.cophys.2019.04.023</p><p>Welker WI. 1964. Analysis of sniffing of the albino rat 1). Behaviour 22:223–244. DOI: https://doi.org/10.1163/</p><p>156853964X00030</p><p>Wenker IC, Kréneisz O, Nishiyama A, Mulkey DK. 2010. Astrocytes in the retrotrapezoid nucleus sense H+ by</p><p>inhibition of a kir4.1- kir5.1- like current and may contribute to chemoreception by a purinergic mechanism.</p><p>Journal of Neurophysiology 104:3042–3052. DOI: https://doi.org/10.1152/jn.00544.2010, PMID: 20926613</p><p>Wertheimer E. 1886. Recherches expérimentales sur les centres respiratoires de la moelle épinière. Journal de</p><p>l’anatomie et de La Physiologie Normales et Pathologiques de l’homme et Des Animaux 22:458–507.</p><p>White DP, Schneider BK, Santen RJ, McDermott M, Pickett CK, Zwillich CW, Weil JV. 1985. Influence of</p><p>testosterone on ventilation and chemosensitivity in male subjects. Journal of Applied Physiology 59:1452–</p><p>1457. DOI: https://doi.org/10.1152/jappl.1985.59.5.1452, PMID: 4066575</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1016/S0306-4522(01)00343-8</p><p>https://doi.org/10.1016/S0306-4522(01)00343-8</p><p>https://doi.org/10.1038/nn.2329</p><p>http://www.ncbi.nlm.nih.gov/pubmed/19503086</p><p>https://doi.org/10.1111/jnc.15041</p><p>http://www.ncbi.nlm.nih.gov/pubmed/32396650</p><p>https://doi.org/10.1016/j.jchemneu.2011.05.008</p><p>https://doi.org/10.1038/nn1892</p><p>https://doi.org/10.1002/cne.903130409</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1783685</p><p>https://doi.org/10.1016/j.neuroscience.2015.12.055</p><p>https://doi.org/10.1016/j.neuroscience.2015.12.055</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26762800</p><p>https://doi.org/10.1111/j.1748-1716.1976.tb10203.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/1274615</p><p>https://doi.org/10.1016/s0166-2236(98)01318-6</p><p>https://doi.org/10.1016/s0166-2236(98)01318-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9735944</p><p>https://doi.org/10.1016/s0014-2999(03)01282-2</p><p>https://doi.org/10.1016/s0014-2999(03)01282-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12600711</p><p>https://doi.org/10.5664/jcsm.26908</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17803007</p><p>https://doi.org/10.1523/JNEUROSCI.3855-06.2006</p><p>https://doi.org/10.1523/JNEUROSCI.3855-06.2006</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17122055</p><p>https://doi.org/10.1111/j.1469-7793.1998.433bh.x</p><p>https://doi.org/10.1111/j.1469-7793.1998.433bh.x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9706021</p><p>https://doi.org/10.1152/jn.2001.85.5.2224</p><p>https://doi.org/10.1152/jn.2001.85.5.2224</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11353037</p><p>https://doi.org/10.3389/fncel.2018.00285</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30210304</p><p>https://doi.org/10.1096/fj.202002189R</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33817828</p><p>https://doi.org/10.1002/jnr.24993</p><p>http://www.ncbi.nlm.nih.gov/pubmed/34850425</p><p>https://doi.org/10.1016/j.jvoice.2011.04.008</p><p>http://www.ncbi.nlm.nih.gov/pubmed/21724365</p><p>https://doi.org/10.1016/j.neuron.2014.06.024</p><p>https://doi.org/10.1016/j.neuron.2014.06.024</p><p>http://www.ncbi.nlm.nih.gov/pubmed/25102560</p><p>https://doi.org/10.1016/j.cophys.2019.04.023</p><p>https://doi.org/10.1163/156853964X00030</p><p>https://doi.org/10.1163/156853964X00030</p><p>https://doi.org/10.1152/jn.00544.2010</p><p>http://www.ncbi.nlm.nih.gov/pubmed/20926613</p><p>https://doi.org/10.1152/jappl.1985.59.5.1452</p><p>http://www.ncbi.nlm.nih.gov/pubmed/4066575</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 65 of 67</p><p>Wiberg M, Westman J, Blomqvist A. 1986. The projection to the mesencephalon from the sensory trigeminal</p><p>nuclei an anatomical study in the cat. Brain Research 399:51–68. DOI: https://doi.org/10.1016/0006-8993(86)</p><p>90600-1, PMID: 3801923</p><p>Widdicombe JG. 1995. Neurophysiology of the cough reflex. The European Respiratory Journal 8:1193–1202.</p><p>DOI: https://doi.org/10.1183/09031936.95.08071193, PMID: 7589405</p><p>Wijdicks EFM. 2007. Biot’s breathing. Journal of Neurology, Neurosurgery, and Psychiatry 78:512–513. DOI:</p><p>https://doi.org/10.1136/jnnp.2006.104919, PMID: 17435185</p><p>Wild B, Rodden FA, Grodd W, Ruch W. 2003. Neural correlates of laughter and humour. Brain 126:2121–2138.</p><p>DOI: https://doi.org/10.1093/brain/awg226, PMID: 12902310</p><p>Williams JL, Robinson PJ, Lutherer LO. 1986. Inhibitory effects of cerebellar lesions on respiration in the</p><p>spontaneously breathing, anesthetized cat. Brain Research 399:224–231. DOI: https://doi.org/10.1016/0006-</p><p>8993(86)91512-x, PMID: 3828761</p><p>Williams JL, Everse SJ, Lutherer LO. 1989. Stimulating fastigial nucleus alters central mechanisms regulating</p><p>phrenic activity. Respiration Physiology 76:215–227. DOI: https://doi.org/10.1016/0034-5687(89)90099-6,</p><p>PMID: 2749026</p><p>Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D. 2007. Control of hypothalamic orexin neurons by</p><p>acid and CO2. PNAS 104:10685–10690. DOI: https://doi.org/10.1073/pnas.0702676104, PMID: 17563364</p><p>Woolf NJ, Butcher LL. 1986. Cholinergic systems in the rat brain: III. projections from the pontomesencephalic</p><p>tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Research Bulletin 16:603–637.</p><p>DOI: https://doi.org/10.1016/0361-9230(86)90134-6, PMID: 3742247</p><p>Woolf NJ, Butcher LL. 1989. Cholinergic systems in the rat brain: IV. descending projections of the</p><p>pontomesencephalic tegmentum. Brain Research Bulletin 23:519–540. DOI: https://doi.org/10.1016/0361-</p><p>9230(89)90197-4, PMID: 2611694</p><p>Wu J, Capelli P, Bouvier J, Goulding M, Arber S, Fortin G. 2017. A V0 core neuronal circuit for inspiration. Nature</p><p>Communications 8:544. DOI: https://doi.org/10.1038/s41467-017-00589-2, PMID: 28916788</p><p>Wu Y, Proch KL, Teran FA, Lechtenberg RJ, Kothari H, Richerson GB. 2019. Chemosensitivity of phox2b-</p><p>expressing retrotrapezoid neurons is mediated in part by input from 5- HT neurons. The Journal of Physiology</p><p>597:2741–2766. DOI: https://doi.org/10.1113/JP277052, PMID: 30866045</p><p>Xu F, Frazier DT. 1995. Medullary respiratory neuronal activity modulated by stimulation of the fastigial nucleus</p><p>of the cerebellum. Brain Research 705:53–64. DOI: https://doi.org/10.1016/0006-8993(95)01138-2, PMID:</p><p>8821733</p><p>Xu F, Frazier DT. 1997. Respiratory- related neurons of the fastigial</p><p>likely that the PiCo is involved in the neural control</p><p>of post- inspiration, but probably more as part on an integrated network than as primary pattern</p><p>generator.</p><p>The PiCo receives strong input from the Kölliker- Fuse nucleus and periaqueductal gray, but there</p><p>are also substantial connections from the caudal and intermediate NTS and the hypothalamic para-</p><p>ventricular nucleus (Oliveira etal., 2021). Also the pre- Bötzinger complex projects to the PiCo (Yang</p><p>and Feldman, 2018). As far as we are aware, there are no systematic studies on PiCo efferents, but</p><p>projections to the pre- Bötzinger complex and retrotrapezoid nucleus have been demonstrated (Lima</p><p>etal., 2019b; Yang etal., 2020).</p><p>Lateral parafacial nucleus</p><p>At the end of the respiratory cycle, the lateral parafacial nucleus can trigger active expiration by</p><p>recruiting expiratory abdominal muscles via the cVRG (Janczewski and Feldman, 2006; Huckstepp</p><p>etal., 2015; Silva etal., 2016a; Pisanski and Pagliardini, 2019). In the literature, the term parafacial</p><p>respiratory group is sometimes used as synonym for the lateral parafacial nucleus, or for the combi-</p><p>nation of the lateral and the ventral parafacial nucleus, or even for the latter together with the retro-</p><p>trapezoid nucleus (Onimaru and Homma, 2003; Huckstepp etal., 2015; Pisanski and Pagliardini,</p><p>2019; Biancardi etal., 2021).</p><p>In embryonic and newborn rodents, the lateral parafacial nucleus is rhythmically active at rest</p><p>(Onimaru and Homma, 2003; Thoby- Brisson etal., 2009), but this activity wanes during early devel-</p><p>opment (Oku etal., 2007; van der Heijden and Zoghbi, 2020), and in adults the lateral parafacial</p><p>nucleus is generally silent during eupnea, but rhythmically active during hyperpnea (Pagliardini etal.,</p><p>2011; Huckstepp etal., 2015; de Britto and Moraes, 2017; Figure3C–D). The inactivity at rest</p><p>could be due to tonic inhibition from the medial NTS (Silva etal., 2019). Excitatory input from the</p><p>commissural NTS, conveying chemosensitive input from the carotid bodies, can activate neurons in</p><p>the lateral parafacial nucleus during periods with elevated blood CO2 levels (Morris et al., 2018;</p><p>Silva etal., 2019). In addition, the parafacial nucleus receives direct input from chemoreceptors in</p><p>the adjacent retrotrapezoid nucleus (Zoccal etal., 2018; Biancardi etal., 2021). Furthermore, input</p><p>comes also from the pre- Bötzinger and Bötzinger complexes, rVRG, Kölliker- Fuse nucleus, reticular</p><p>formation, caudal raphe, lateral and medial parabrachial nuclei, periaqueductal gray, PPTg and vestib-</p><p>ular nuclei (Biancardi etal., 2021).</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 9 of 67</p><p>Sensory feedback</p><p>To adapt the depth of ventilation to the metabolic state, the blood gas balance is continuously moni-</p><p>tored. At the same time, sensory systems of the airways and lungs, consisting of thermo-, mechano-,</p><p>and chemoreceptors, survey ongoing respiration and detect environmental irritants and inflamma-</p><p>tory mediators (Sant’Ambrogio etal., 1983; Lee and Yu, 2014). Muscle spindles give feedback on</p><p>posture and respiratory muscle performance (Nakayama etal., 1998). Altogether, sensory feedback</p><p>affects ventilatory control, and can trigger respiratory reflexes aimed at maintaining homeostasis upon</p><p>adverse events. In addition, also hormones can modulate respiratory behavior.</p><p>Chemoreception</p><p>Chemoreceptors monitor the partial pressures of O2 (pO2) and CO2 (pCO2) in blood and cerebrospinal</p><p>fluid. Since CO2 reacts with water to form HCO3</p><p>- and H+, increased pCO2 leads to acidosis that can</p><p>cause adverse effects on tissue structures, and may result in headaches, delirium and eventually coma</p><p>(Cummins etal., 2020). Regulation of pCO2 is therefore, next to that of pO2, of great importance,</p><p>and a major drive for the level of ventilation (Miescher- Rüsch, 1885; Haldane and Priestley, 1905).</p><p>The concentrations of both gasses are continuously measured by peripheral chemoreceptors in the</p><p>carotid bodies (Gonzalez etal., 1994; Milsom and Burleson, 2007; Cummins etal., 2020; Ortega-</p><p>Sáenz and López- Barneo, 2020). The carotid bodies project mainly to the NTS (Claps and Torrealba,</p><p>1988; Finley and Katz, 1992; Mifflin, 1992; Zera etal., 2019), but also to the cVRG (Finley and</p><p>Katz, 1992).</p><p>Acidosis can also be caused by inflammation, ischemia or defective acid containment. Conse-</p><p>quently, acid sensing is not restricted to respiratory control and has evolved as an important property</p><p>of neurons with unmyelinated and thinly myelinated fibers (Canning and Spina, 2009). Only those</p><p>areas that sense pH changes and directly affect ventilation are considered to be central chemore-</p><p>ceptor areas. In this respect, most attention has been given to the retrotrapezoid nucleus, but also the</p><p>NTS, locus coeruleus, raphe nuclei, lateral hypothalamus, and cerebellar fastigial nucleus are central</p><p>chemoreceptor areas (Coates etal., 1993; Nattie, 1999; Nattie and Li, 2002; Xu and Frazier, 2002;</p><p>Putnam etal., 2004; Guyenet etal., 2008; Dean and Putnam, 2010; Li etal., 2013; Figure4A).</p><p>Central chemoreceptors</p><p>Several molecular mechanisms for central chemoreception have been proposed (Gourine and Dale,</p><p>2022). First, in astrocytes, increased levels of HCO3</p><p>- can activate the electroneutral Na+/HCO3</p><p>- co- trans-</p><p>porter NBCn1 (SLC4A7), causing Na+ influx that in turn activates the astrocytic Na+/Ca2+ exchanger</p><p>Ncx103 (SLC8A1- 3; Turovsky etal., 2016). The resulting increase in intracellular Ca2+ triggers ATP</p><p>release (Gourine etal., 2005; Gourine etal., 2010). Purinergic receptors on nearby neurons are acti-</p><p>vated by ATP, leading to neuronal excitation (Gourine etal., 2005; Figure4B–C).</p><p>Second, inward- rectifier K+ (Kir) channels can be inhibited by a decrease in pH, and trigger depolar-</p><p>ization and consequently ATP release by astrocytes (Wenker etal., 2010; Figure4C).</p><p>A third mechanism, one that is independent of pH changes, involves the ability of CO2 to induce</p><p>conformational changes in the connexin- hemichannel Cx26 located in gap junctions between glial</p><p>cells, rendering Cx26 permeable to ATP (Bevans and Harris, 1999; Huckstepp etal., 2010; Meigh</p><p>etal., 2013; van de Wiel etal., 2020; Figure4E). Later studies revealed the interaction between CO2</p><p>and Cx26 to be more complicated, and probably context- dependent (Nijjar etal., 2021).</p><p>In addition to glial- mediated chemoreception, also neurons express acid- sensitive ion channels</p><p>(ASICs) and receptors (Canning and Spina, 2009). Among these are some members of the family</p><p>of inwardly rectifying K2P channels (Lesage and Barhanin, 2011; Sepúlveda etal., 2015), such as</p><p>TASK1 and TASK3 that are co- expressed with ASIC1 in the ventrolateral medulla, and contribute to</p><p>central chemoreception in rats (Wang etal., 2018). Another family member is the TASK- 2 K+ leak</p><p>channel, whose absence leads to impaired ventilatory responses to hypercapnia (Gestreau et al.,</p><p>2010; Bayliss etal., 2015; Figure4D).</p><p>The KCNA1 gene encodes the α subunit of Kv1.1 voltage- gated potassium channels that show</p><p>particularly strong expression in hippocampus, cerebellum, neocortex and peripheral nerves</p><p>(D’Adamo etal., 2014; Ovsepian etal., 2016). Mutations in the KCNA1 gene can lead to the devel-</p><p>opment of episodic ataxia type 1 (EA1), an autosomal dominant disorder with multiple symptoms,</p><p>most prominently episodes of cerebellar ataxia and myokymia (Browne etal., 1994; Paulhus etal.,</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 10 of 67</p><p>2020). These episodes are often triggered by physical and emotional stress, which could be related</p><p>to a defect in respiratory chemoreception (Kline etal., 2005). Furthermore, mutations in Kv1.1 chan-</p><p>nels have been associated with epilepsy, and Kcna1- deficient mice are considered to be a model of</p><p>nucleus in response to chemical and</p><p>mechanical challenges. Journal of Applied Physiology 82:1177–1184. DOI: https://doi.org/10.1152/jappl.1997.</p><p>82.4.1177, PMID: 9104854</p><p>Xu F, Frazier DT. 2000. Modulation of respiratory motor output by cerebellar deep nuclei in the rat. Journal of</p><p>Applied Physiology 89:996–1004. DOI: https://doi.org/10.1152/jappl.2000.89.3.996, PMID: 10956343</p><p>Xu F, Zhang Z, Frazier DT. 2001a. Microinjection of acetazolamide into the fastigial nucleus augments respiratory</p><p>output in the rat. Journal of Applied Physiology 91:2342–2350. DOI: https://doi.org/10.1152/jappl.2001.91.5.</p><p>2342, PMID: 11641379</p><p>Xu F, Zhou T, Gibson T, Frazier DT. 2001b. Fastigial nucleus- mediated respiratory responses depend on the</p><p>medullary gigantocellular nucleus. Journal of Applied Physiology 91:1713–1722. DOI: https://doi.org/10.1152/</p><p>jappl.2001.91.4.1713, PMID: 11568155</p><p>Xu F, Frazier DT. 2002. Role of the cerebellar deep nuclei in respiratory modulation. Cerebellum 1:35–40. DOI:</p><p>https://doi.org/10.1080/147342202753203078, PMID: 12879972</p><p>Yackle K, Schwarz LA, Kam K, Sorokin JM, Huguenard JR, Feldman JL, Luo L, Krasnow MA. 2017. Breathing</p><p>control center neurons that promote arousal in mice. Science 355:1411–1415. DOI: https://doi.org/10.1126/</p><p>science.aai7984, PMID: 28360327</p><p>Yamada H, Ezure K, Manabe M. 1988. Efferent projections of inspiratory neurons of the ventral respiratory group</p><p>a dual labeling study in the rat. Brain Research 455:283–294. DOI: https://doi.org/10.1016/0006-8993(88)</p><p>90087-x, PMID: 3401784</p><p>Yang Y, Lisberger SG. 2014. Purkinje- cell plasticity and cerebellar motor learning are graded by complex- spike</p><p>duration. Nature 510:529–532. DOI: https://doi.org/10.1038/nature13282, PMID: 24814344</p><p>Yang CF, Feldman JL. 2018. Efferent projections of excitatory and inhibitory prebötzinger complex neurons. The</p><p>Journal of Comparative Neurology 526:1389–1402. DOI: https://doi.org/10.1002/cne.24415, PMID: 29473167</p><p>Yang CF, Kim EJ, Callaway EM, Feldman JL. 2020. Monosynaptic projections to excitatory and inhibitory</p><p>prebötzinger complex neurons. Frontiers in Neuroanatomy 14:58. DOI: https://doi.org/10.3389/fnana.2020.</p><p>00058, PMID: 33013329</p><p>Yang B, Sanches- Padilla J, Kondapalli J, Morison SL, Delpire E, Awatramani R, Surmeier DJ. 2021. Locus</p><p>coeruleus anchors a trisynaptic circuit controlling fear- induced suppression of feeding. Neuron 109:823–838..</p><p>DOI: https://doi.org/10.1016/j.neuron.2020.12.023, PMID: 33476548</p><p>Yanovsky Y, Ciatipis M, Draguhn A, Tort ABL, Brankačk J. 2014. Slow oscillations in the mouse hippocampus</p><p>entrained by nasal respiration. The Journal of Neuroscience 34:5949–5964. DOI: https://doi.org/10.1523/</p><p>JNEUROSCI.5287-13.2014, PMID: 24760854</p><p>Yao Q, Pho H, Kirkness J, Ladenheim EE, Bi S, Moran TH, Fuller DD, Schwartz AR, Polotsky VY. 2016. Localizing</p><p>effects of leptin on upper airway and respiratory control during sleep. Sleep 39:1097–1106. DOI: https://doi.</p><p>org/10.5665/sleep.5762, PMID: 26951402</p><p>https://doi.org/10.7554/eLife.83654</p><p>https://doi.org/10.1016/0006-8993(86)90600-1</p><p>https://doi.org/10.1016/0006-8993(86)90600-1</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3801923</p><p>https://doi.org/10.1183/09031936.95.08071193</p><p>http://www.ncbi.nlm.nih.gov/pubmed/7589405</p><p>https://doi.org/10.1136/jnnp.2006.104919</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17435185</p><p>https://doi.org/10.1093/brain/awg226</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12902310</p><p>https://doi.org/10.1016/0006-8993(86)91512-x</p><p>https://doi.org/10.1016/0006-8993(86)91512-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3828761</p><p>https://doi.org/10.1016/0034-5687(89)90099-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2749026</p><p>https://doi.org/10.1073/pnas.0702676104</p><p>http://www.ncbi.nlm.nih.gov/pubmed/17563364</p><p>https://doi.org/10.1016/0361-9230(86)90134-6</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3742247</p><p>https://doi.org/10.1016/0361-9230(89)90197-4</p><p>https://doi.org/10.1016/0361-9230(89)90197-4</p><p>http://www.ncbi.nlm.nih.gov/pubmed/2611694</p><p>https://doi.org/10.1038/s41467-017-00589-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28916788</p><p>https://doi.org/10.1113/JP277052</p><p>http://www.ncbi.nlm.nih.gov/pubmed/30866045</p><p>https://doi.org/10.1016/0006-8993(95)01138-2</p><p>http://www.ncbi.nlm.nih.gov/pubmed/8821733</p><p>https://doi.org/10.1152/jappl.1997.82.4.1177</p><p>https://doi.org/10.1152/jappl.1997.82.4.1177</p><p>http://www.ncbi.nlm.nih.gov/pubmed/9104854</p><p>https://doi.org/10.1152/jappl.2000.89.3.996</p><p>http://www.ncbi.nlm.nih.gov/pubmed/10956343</p><p>https://doi.org/10.1152/jappl.2001.91.5.2342</p><p>https://doi.org/10.1152/jappl.2001.91.5.2342</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11641379</p><p>https://doi.org/10.1152/jappl.2001.91.4.1713</p><p>https://doi.org/10.1152/jappl.2001.91.4.1713</p><p>http://www.ncbi.nlm.nih.gov/pubmed/11568155</p><p>https://doi.org/10.1080/147342202753203078</p><p>http://www.ncbi.nlm.nih.gov/pubmed/12879972</p><p>https://doi.org/10.1126/science.aai7984</p><p>https://doi.org/10.1126/science.aai7984</p><p>http://www.ncbi.nlm.nih.gov/pubmed/28360327</p><p>https://doi.org/10.1016/0006-8993(88)90087-x</p><p>https://doi.org/10.1016/0006-8993(88)90087-x</p><p>http://www.ncbi.nlm.nih.gov/pubmed/3401784</p><p>https://doi.org/10.1038/nature13282</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24814344</p><p>https://doi.org/10.1002/cne.24415</p><p>http://www.ncbi.nlm.nih.gov/pubmed/29473167</p><p>https://doi.org/10.3389/fnana.2020.00058</p><p>https://doi.org/10.3389/fnana.2020.00058</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33013329</p><p>https://doi.org/10.1016/j.neuron.2020.12.023</p><p>http://www.ncbi.nlm.nih.gov/pubmed/33476548</p><p>https://doi.org/10.1523/JNEUROSCI.5287-13.2014</p><p>https://doi.org/10.1523/JNEUROSCI.5287-13.2014</p><p>http://www.ncbi.nlm.nih.gov/pubmed/24760854</p><p>https://doi.org/10.5665/sleep.5762</p><p>https://doi.org/10.5665/sleep.5762</p><p>http://www.ncbi.nlm.nih.gov/pubmed/26951402</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 66 of 67</p><p>Yatim N, Billig I, Compoint C, Buisseret P, Buisseret- Delmas C. 1996. Trigeminocerebellar and trigemino- olivary</p><p>projections in rats. Neuroscience Research 25:267–283. DOI: https://doi.org/10.1016/0168-0102(96)01061-9,</p><p>PMID: 8856723</p><p>Yokota S, Tsumori T, Ono K, Yasui Y. 2004. Glutamatergic pathways from the Kölliker- fuse nucleus to the phrenic</p><p>nucleus in the rat. Brain Research 995:118–130. DOI: https://doi.org/10.1016/j.brainres.2003.09.067, PMID:</p><p>14644477</p><p>Yokota S, Oka T, Tsumori T, Nakamura S, Yasui Y. 2007. Glutamatergic neurons in the Kölliker- Fuse nucleus</p><p>project to the rostral ventral respiratory group and phrenic nucleus: a combined retrograde tracing and in situ</p><p>hybridization study in the rat. Neuroscience Research 59:341–346. DOI: https://doi.org/10.1016/j.neures.2007.</p><p>08.004, PMID: 17888537</p><p>Yokota S, Kaur S, VanderHorst VG, Saper CB, Chamberlin NL. 2015. Respiratory- Related outputs of</p><p>glutamatergic, hypercapnia- responsive parabrachial neurons in mice. The Journal of Comparative Neurology</p><p>523:907–920. DOI: https://doi.org/10.1002/cne.23720, PMID: 25424719</p><p>Yokota S, Oka T, Asano H, Yasui Y. 2016. Orexinergic fibers are in contact with Kölliker- Fuse nucleus neurons</p><p>projecting to the respiration- related nuclei in the medulla oblongata and spinal cord of the rat. Brain Research</p><p>1648:512–523. DOI: https://doi.org/10.1016/j.brainres.2016.08.020, PMID: 27544422</p><p>Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. 2006. Afferents to the orexin neurons of the rat</p><p>brain. The Journal of Comparative Neurology 494:845–861. DOI: https://doi.org/10.1002/cne.20859, PMID:</p><p>16374809</p><p>Young JK, Wu M, Manaye KF, Kc P, Allard JS, Mack SO, Haxhiu MA. 2005. Orexin stimulates breathing via</p><p>medullary and spinal pathways. Journal of Applied Physiology 98:1387–1395. DOI: https://doi.org/10.1152/</p><p>japplphysiol.00914.2004, PMID: 15557013</p><p>Yu L, Zhang XY, Zhang J, Zhu JN, Wang JJ. 2010. Orexins excite neurons of the rat cerebellar nucleus</p><p>interpositus via orexin 2 receptors in vitro. Cerebellum 9:88–95. DOI: https://doi.org/10.1007/s12311-009-</p><p>0146-0, PMID: 19921532</p><p>Yu RB, Huang CC, Chang CH, Wang YH, Chen JW. 2021. Prevalence and patterns of tongue deformation in</p><p>obstructive sleep apnea: A whole- night simultaneous ultrasonographic</p><p>sudden unexpected death in epilepsy (SUDEP), while also showing progressive respiratory dysfunc-</p><p>tion (Simeone etal., 2018; D’Adamo etal., 2020; Paulhus etal., 2020). As respiratory dysfunction</p><p>is hypothesized to be a primary risk factor for susceptibility to the cardiorespiratory dysfunction in</p><p>epilepsy, this could reveal a new role for KCNA1 channelopathies in the regulation of basal respiratory</p><p>physiology (Dhaibar etal., 2019).</p><p>Vagal sensory input</p><p>The lungs and airways, in particular the larynx, are lined with sensory receptors associated with the</p><p>nervus vagus (Mortola etal., 1975; Lee and Yu, 2014; Mazzone and Undem, 2016; Kupari etal.,</p><p>A</p><p>B</p><p>D</p><p>C</p><p>CVessel</p><p>+</p><p>+ +</p><p>+</p><p>CO2 + H2O → HCO3 + H+</p><p>HCO3</p><p>HCO3 Na+ Ca2+</p><p>ATP</p><p>ATP</p><p>Na+</p><p>Na+</p><p>Na+</p><p>K+</p><p>K+</p><p>K+</p><p>K+</p><p>K+</p><p>K+Vm</p><p>Ca2+</p><p>CO2</p><p>NBCn1</p><p>Astrocytes</p><p>Neuron</p><p>Astrocyte</p><p>Neuron</p><p>ASIC1 TASK1</p><p>TASK3</p><p>Vessel</p><p>Ncx103 Kir</p><p>+</p><p>E 100 nm</p><p>E</p><p>D</p><p>NTS</p><p>CO2</p><p>Fastigial</p><p>nucleus</p><p>CO2</p><p>Retro-</p><p>trapezoid</p><p>nucleus</p><p>CO2</p><p>Locus</p><p>coeruleus</p><p>CO2</p><p>Caudal</p><p>raphe</p><p>CO2</p><p>Lateral</p><p>hypo-</p><p>thalamus</p><p>CO2</p><p>Carotid</p><p>bodies</p><p>CO2O2</p><p>Dorsal</p><p>raphe</p><p>CO2</p><p>CO2 + H2O → HCO3 + H+</p><p>Figure 4. Respiratory chemoreception. (A) Connections between the carotid bodies and the central</p><p>chemoreceptor areas. (B) Astrocytes are in direct contact with blood vessels and neurons. (C) Chemoreceptor</p><p>pathways in astrocytes triggering ATP release that can activate nearby neurons. (D) Chemoreceptor pathways in</p><p>neurons, based on activation of Na+ channelsand inward- rectifier K+ channels. (E) Gap junctions between glial</p><p>cells, as shown here in the cerebellar cortex of a mouse (yellow arrows), can contribute to central chemoreception.</p><p>In particular, the conductivity of gap junctions composed of Cx26 depends on pH. Previously unpublished electron</p><p>microscopic image from our lab.</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 11 of 67</p><p>2019). Flow receptors sense air temperature, which is typically colder for inhaled than for exhaled air</p><p>(Sant’Ambrogio etal., 1983), and drive receptors measure the laryngeal wall pressure that correlates</p><p>with its conductivity (Horner, 2012). Flow and drive receptors are active during each breath (Sant’Am-</p><p>brogio etal., 1983), while other mechano- and chemoreceptors are only activated during adverse</p><p>conditions, such as an obstruction, the presence of irritants, or increased CO2 concentrations (Lee and</p><p>Yu, 2014). Sensory information from the distal airways is transferred via the nodose ganglion to the</p><p>NTS, while that of the proximal airways goes predominantly via the jugular ganglion to the paratri-</p><p>geminal nucleus (McGovern etal., 2015a; McGovern etal., 2015b; Kim etal., 2020).</p><p>Vagal stretch receptors, associated with Aβ fibers, can be subdivided into slowly and rapidly</p><p>adapting receptors: SARs and RARs, respectively. SARs sense inflation and can stay activated for</p><p>sustained periods, while RARs are more sensitive to acute changes in pressure (Davenport etal.,</p><p>1981; Kaufman etal., 1982; Mazzone and Undem, 2016). Although all RARs rapidly adapt to a</p><p>persistent mechanical stimulus, a subset of them, the so- called irritant receptors, can remain acti-</p><p>vated by specific chemicals for a prolonged period (Sant’Ambrogio, 1982). Environmental irritants</p><p>and inflammatory mediators can trigger activity of unmyelinated C fibers, while localized mechanical</p><p>stimuli and acid can activate thinly myelinated Aδ fibers that are also known as cough receptors, and</p><p>that are located in the airway epithelium and mucosa (Coleridge and Coleridge, 1984; Canning</p><p>etal., 2004; Mazzone etal., 2009; Grace etal., 2012; Canning etal., 2014; Mazzone and Undem,</p><p>2016).</p><p>Cough and expiration reflexes</p><p>Coughing is a vital action to clear the airways. Coughing involves first inspiration, then obstruction of</p><p>airways to build up pressure, and subsequent explosive expulsion of air. Ineffective cough reflexes,</p><p>for example in patients with dementia, can lead to lethal aspiration pneumonia (Widdicombe, 1995;</p><p>Mutolo, 2017; Sykes and Morice, 2021). Inversely, the relatively common condition of chronic cough,</p><p>affecting more than 5% of the adult population, is thought to be caused by hypersensitivity to airway</p><p>stimulation (Morice etal., 2020).</p><p>The cough reflex is typically triggered by stimulation of the cough receptors and possibly also by</p><p>activation of C fibers in the airways (Ludlow, 2015; Mutolo, 2017). Mechanical stimulation of the vocal</p><p>cords can trigger the expiration reflex, which resembles cough without the initial inspiration (Korpas</p><p>and Jakus, 2000; Sant’Ambrogio and Widdicombe, 2001; Tatar etal., 2008; Ludlow, 2015).</p><p>Stimulation of irritant receptors in the upper airways can evoke a cough reflex via activation of the</p><p>paratrigeminal nucleus, and this reflex can be suppressed by the submedial thalamic nucleus and the</p><p>upstream ventrolateral orbital cortex (Mazzone etal., 2020). In the periaqueductal gray, the excit-</p><p>atory drive from the paratrigeminal nucleus and the inhibitory input from the ventrolateral orbital</p><p>cortex come together (McGovern et al., 2015b). The periaqueductal gray is hence an important</p><p>intermediate between the forebrain and the cVRG (Holstege, 1989; Subramanian etal., 2008; Chen</p><p>etal., 2022). The cVRG itself is essential for the cough reflex (Mutolo, 2017; Cinelli etal., 2020), as it</p><p>can activate both expiratory motor neurons in the thoracic spinal cord, controlling abdominal muscles,</p><p>and in the ambiguus nucleus, controlling laryngeal muscles (Figure5F).</p><p>Stimulation of the lower airways or the lungs activates RAR relay neurons in the NTS. These neurons</p><p>receive also input from various other sources that can contribute to suppression or facilitation of</p><p>coughing (Mutolo, 2017). Thalamocortical loops can further modulate coughing and exert voluntary</p><p>control (Ando etal., 2016). Like the paratrigeminal nucleus, the NTS innervates the cVRG (Gerrits</p><p>and Holstege, 1996). In addition, the NTS affects also the phrenic nucleus, directly as well as indi-</p><p>rectly via the rVRG (Ezure and Tanaka, 1996; Wu etal., 2017). These connections are complemented</p><p>with direct output to the ambiguus nucleus from both the paratrigeminal nucleus and the NTS (Caous</p><p>etal., 2001; de Sousa Buck etal., 2001; Kawai, 2018; Figure5F).</p><p>Sneeze reflex</p><p>In the nasal mucosa, irritant receptors expressing Trpv1, a capsaicin- sensitive cation ion channel, that</p><p>can be activated by histamine H1R receptors (Shim etal., 2007), are present on thin sensory fibers of</p><p>the ethmoidal nerve that terminates in the sneeze- evoking region (Lucier and Egizii, 1986; Nonaka</p><p>etal., 1990; Seijo- Martínez etal., 2006; Li etal., 2021). The sneeze- evoking region is a dedicated</p><p>part of the spinal trigeminal nucleus that projects to the cVRG (Li etal., 2021).</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 12 of 67</p><p>Dorso-</p><p>medial</p><p>hypothal.</p><p>Para-</p><p>ventricular</p><p>hypothal.</p><p>Central</p><p>amygdala BNST</p><p>Pre-</p><p>Bötzinger</p><p>complex</p><p>Peri-</p><p>aqueductal</p><p>gray</p><p>PPTg</p><p>MPBN</p><p>LPBN</p><p>A</p><p>Rostral</p><p>Intermediate</p><p>Caudal</p><p>AP</p><p>Fourth</p><p>ventricle</p><p>NTS</p><p>Rostral</p><p>Caudal</p><p>Intermediate</p><p>Caudal</p><p>Dorsal</p><p>Ventral</p><p>250 µm</p><p>Gelatinous</p><p>Com</p><p>m</p><p>.</p><p>IV</p><p>Central</p><p>Medial</p><p>Interm.Ventral</p><p>Ventro-</p><p>lateral</p><p>Dorsolateral</p><p>Dorsomedial</p><p>Medial</p><p>Inter-</p><p>mediate</p><p>Ventral</p><p>Inter-</p><p>stitialVentro-</p><p>lateral Central</p><p>AP</p><p>B</p><p>Modulatory areas</p><p>C Pattern generators</p><p>Lateral</p><p>hypo-</p><p>thalamus</p><p>CO2</p><p>Central chemoreceptor areas Limbic system</p><p>Motor areas</p><p>Phrenic</p><p>nucleus</p><p>Trigeminal</p><p>motor</p><p>nucleus</p><p>Facial</p><p>nucleus</p><p>Hypo-</p><p>glossal</p><p>nucleus</p><p>Ambiguus</p><p>nucleus</p><p>Pre-</p><p>Bötzinger</p><p>complex</p><p>Lateral</p><p>parafacial</p><p>nucleus</p><p>PiCo</p><p>Input from NTS</p><p>Output to NTS</p><p>Retro-</p><p>trapezoid</p><p>nucleus</p><p>CO2</p><p>Locus</p><p>coeruleus</p><p>CO2</p><p>Dorsal</p><p>raphe</p><p>CO2</p><p>Caudal</p><p>raphe</p><p>CO2</p><p>Spinal</p><p>trigeminal</p><p>nucleus</p><p>Para-</p><p>trigeminal</p><p>nucleus</p><p>Sensory regions</p><p>Bötzinger</p><p>complex</p><p>Sensorimotor areas</p><p>Inferior</p><p>olive</p><p>Cerebellar</p><p>cortex</p><p>Vestibular</p><p>nuclei</p><p>cVRG</p><p>rVRG</p><p>Premotor areas</p><p>FD Coughing reflex</p><p>Respiration</p><p>Capsaicin</p><p>Brady-</p><p>pnea</p><p>Brady-</p><p>cardiaNTS</p><p>POMC</p><p>CO2</p><p>E Cardiorespiratory regulation</p><p>Peri-</p><p>aqueductal</p><p>gray</p><p>Para-</p><p>trigeminal</p><p>nucleus</p><p>Submedial</p><p>thalamus</p><p>Ventrolat.</p><p>orbital</p><p>cortex</p><p>Thalamus Cerebral</p><p>cortex</p><p>Larynx</p><p>Upper airways</p><p>Lungs</p><p>Lower airways</p><p>Nodose</p><p>ganglion</p><p>rVRG Phrenic</p><p>nucleus</p><p>NTS</p><p>CO2</p><p>cVRG</p><p>Abdom</p><p>en</p><p>D</p><p>iaphragm</p><p>Ambiguus</p><p>nucleus</p><p>Larynx</p><p>Ambiguus</p><p>nucleus</p><p>Thoracic</p><p>spinal</p><p>cord</p><p>Jugular</p><p>ganglion</p><p>C fibers</p><p>RARs</p><p>+</p><p>P</p><p>cells</p><p>RAR</p><p>cells</p><p>SARs</p><p>+</p><p>+</p><p>RAR receptor</p><p>C fiber</p><p>SAR receptor</p><p>Kölliker-</p><p>Fuse</p><p>nucleus</p><p>Figure 5. The nucleus of the solitary tract and vagal afferents. Schematic drawings of the nucleus of the solitary tract (NTS) in relation to the area</p><p>postrema (AP) and the fourth ventricle (IV). Dorsal (A) and coronal views at intermediate and caudal levels (B). (C) Brain regions that project to, or get</p><p>input from the NTS. With most areas, bidirectional connections exist (cyan dots: areas innervated by NTS neurons; black dots: areas with neurons</p><p>innervating the NTS). (D) Heterogeneity in vagal afferents. Capsaicin can, as a pulmonary irritant, evoke activity of C fibers, but not of rapidly or</p><p>Figure 5 continued on next page</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 13 of 67</p><p>Postural feedback</p><p>The external and internal intercostal muscles assist with, respectively, expansion and contraction</p><p>of the rib- cage during breathing (Figure1A–E). In addition, the intercostal muscles exert postural</p><p>control, and they combine their respiratory and postural activity in a superposed manner (Rimmer</p><p>etal., 1995). Single intercostal 1a afferents project to the region of Clarke’s column, to the inter-</p><p>costal motor nucleus, and to the intermediate regions, conveying sensory feedback originating from</p><p>muscle spindles in the intercostal muscles (Nakayama etal., 1998). From Clarke’s column, informa-</p><p>tion is projected to the cerebellar cortex via the spinocerebellar tract, originating from two types</p><p>of respiration- related neurons in the lower thoracic segments (T9- T12). This spinocerebellar tract</p><p>contains uncrossed as well as crossed ascending axons that play different roles in transmitting signals</p><p>between the spinal cord and the cerebellum (Tanaka and Hirai, 1994). Rhythmic activity in uncrossed</p><p>spinocerebellar tract neurons, located in and around Clarke’s column, reflects afferent activity from</p><p>the chest wall, whereas that of crossed neurons, located in laminae VII and VIII, reflect descending</p><p>influence from the respiratory centers with or without peripheral influences (Matsushita etal., 1979;</p><p>Tanaka and Hirai, 1994). It has been suggested that the cerebellum uses the posture- related infor-</p><p>mation of the thoracic spinocerebellar tract neurons to adjust posture or coordination of whole body</p><p>movements (Tanaka and Hirai, 1994).</p><p>Hormonal regulation of respiration</p><p>Several hormones can affect development and metabolism, and thus have an indirect effect on respi-</p><p>ration. Thyroid hormones, for instance, are critical for the development of the respiratory system,</p><p>and their dysfunction can lead to respiratory failure, including the respiratory distress syndrome (Pei</p><p>etal., 2011; Rousseau etal., 2021). Hormones with a specific role in respiratory control are discussed</p><p>below.</p><p>Sex hormones</p><p>Progesterone, estradiol and testosterone can all affect respiratory parameters (White etal., 1985),</p><p>and these effects could help explain differences in respiratory behavior between males and females,</p><p>as well as during different life stages (Gargaglioni etal., 2019; LoMauro and Aliverti, 2021). Indeed,</p><p>sex hormone receptors are widely distributed in the brain, including central chemoreceptor areas</p><p>(Gargaglioni etal., 2019; LoMauro and Aliverti, 2021), certain respiratory motor neurons, such as</p><p>the hypoglossal and phrenic nuclei (Behan and Thomas, 2005), and cerebellar Purkinje cells (Perez-</p><p>Pouchoulen etal., 2016). Progesterone levels correlate with the muscle tone of the genioglossus</p><p>muscle, and thus with upper airway rigidity, which could play a role in the reduced occurrence of</p><p>obstructive sleep apnea in females when compared to males (Popovic and White, 1998).</p><p>Leptin</p><p>Leptin is primarily secreted by adipocytes. An increase in adipose tissue therefore leads to more leptin</p><p>secretion, which results in increased breathing activity (Chang etal., 2013; Bassi etal., 2016; Gauda</p><p>etal., 2020). Leptin can activate a specific subset of excitatory neurons in the NTS projecting to respi-</p><p>ratory premotor neurons in the rVRG, as well as to the dorsomedial hypothalamus (Do etal., 2020).</p><p>Next to the direct projection from the NTS to the rVRG, an indirect pathway via the lateral parabra-</p><p>chial nucleus to the pre- Bötzinger complex is also likely to contribute to the impact of leptin on respi-</p><p>ratory frequency (Yu etal., 2022). The dorsomedial hypothalamus, which itself also contains leptin</p><p>slowly adapting receptors (RAR and SAR, respectively). The latter two show phasic activity during regular breathing. Schematic drawing of action</p><p>potential firing based on data presented in Ho etal., 2001. (E) Pro- opiomelanocortin- expressing (POMC) neurons of the NTS project to the pre-</p><p>Bötzinger complex and to cardiac vagal motor neurons in the ambiguus nucleus. Via these pathways, they can reduce inspiration and cardiac function,</p><p>respectively. (F) Coughing can be triggered by sensing an irritant via vagal projections from the larynx or upper airways via the jugular ganglion to</p><p>the paratrigeminal nucleus, or from the lungs or lower airways via the nodose ganglion to the NTS. Distinct types of vagal fibers differentially affect</p><p>RAR relay neurons, with SARs inhibiting pump neurons (P cells). The motor neurons of expiratory muscles are directly and indirectly activated from the</p><p>paratrigeminal nucleus and the NTS. A specific cortical circuit for inhibiting reflexive coughing involving the submedial thalamus and the ventrolateral</p><p>orbital cortex has been described, next to more general thalamo- cortical pathways that can modulate coughing. The latter pathways can use different</p><p>connections to premotor nuclei (indicated with dotted lines).</p><p>Figure 5 continued</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 14 of 67</p><p>receptors, can contribute to upper airway control during respiration (Yao etal., 2016). The impact</p><p>of the leptin- mediated pathways may be compromised in obesity, as leptin resistance can contribute</p><p>to the development of obesity hypoventilation syndrome and central sleep apnea (O’Donnell etal.,</p><p>2000; Yao etal., 2016; Framnes and Arble, 2018).</p><p>Full- length leptin receptors (LEPRB) are not restricted to the NTS and dorsomedial hypothalamus,</p><p>but can also be found in the carotid bodies, neocortex, substantia nigra and cerebellum (Guan etal.,</p><p>1997; Gavello etal., 2016). Although it is not clear whether these all affect respiratory control, it has</p><p>been shown that activation of leptin receptors in the carotid bodies can affect breathing and induce</p><p>ventilatory response to hypoxia (Caballero- Eraso etal., 2019).</p><p>Hyperventilation</p><p>Not only increased metabolic activity, but also emotional arousal can cause an increase in the level</p><p>of ventilation. While such a stress- induced reaction makes sense as preparation for a fight or flight</p><p>reaction, it can derail during a panic attack (Suess etal., 1980; Meuret etal., 2017). In the absence</p><p>of increased metabolic demands, hyperventilation induces a decrease in pCO2, which increases blood</p><p>pH (Gardner, 1996). Hyperventilation can be associated with several symptoms of panic, including</p><p>shortness of breath, heart racing, dizziness, and fear of dying (Gardner, 1996; Meuret etal., 2017).</p><p>Although hyperventilation is typically triggered by stress, anxiety or panic,</p><p>in rare cases it can also</p><p>have a neurological cause, and central neurogenic hyperventilation is often associated with pontine</p><p>damage (Plum and Swanson, 1959; Tarulli etal., 2005).</p><p>Central chemoreceptor areas</p><p>Retrotrapezoid nucleus</p><p>The retrotrapezoid nucleus is considered as the main central chemoreceptor area, and inhibition of its</p><p>activity reduces the ventilatory response to hypercapnia (Mulkey etal., 2004; Marina etal., 2010;</p><p>Burke etal., 2015; Ruffault etal., 2015), while optogenetic stimulation of the retrotrapezoid nucleus</p><p>can increase the breathing rate by reducing the duration of expiration (Abbott etal., 2009; Abbott</p><p>etal., 2011; Burke etal., 2015; Souza etal., 2020). Cholinergic input, probably from the PPTg and</p><p>the PiCo, can increase the activity of chemoreceptors (Sobrinho etal., 2016; Lima etal., 2019b),</p><p>while serotonergic input from the caudal and dorsal raphe can enhance the chemosensitive response</p><p>in the retrotrapezoid nucleus (Rosin etal., 2006; Brust etal., 2014; Wu etal., 2019; Leirão etal.,</p><p>2021).</p><p>The retrotrapezoid nucleus consists in mice of around 700 Phox2b- positive cells located ventro-</p><p>lateral to the facial nucleus. The locations of these neurons partially overlap with those of the lateral</p><p>parafacial nucleus (Smith etal., 1989; Onimaru and Homma, 2003; Ramanantsoa etal., 2011; Shi</p><p>etal., 2017). The retrotrapezoid nucleus houses also around 200 biochemically and morphologically</p><p>different neurons that lack CO2- sensitivity, and that could be related to sighing via their direct projec-</p><p>tion to the pre- Bötzinger complex (Li etal., 2016; Shi etal., 2017).</p><p>Next to pCO2, also sensory input relayed via the caudal and commissural parts of the NTS (Rosin</p><p>etal., 2006) affects the activity of the retrotrapezoid nucleus. In addition, direct inputs come from the</p><p>pre- Bötzinger complex (Tan etal., 2010; Yang and Feldman, 2018), Kölliker- Fuse nucleus, and lateral</p><p>and medial parabrachial nuclei (Rosin etal., 2006; Song etal., 2012a; Lima etal., 2019b), rVRG and</p><p>cVRG (Rosin etal., 2006; Jones etal., 2016), lateral and paraventricular hypothalamus (Rosin etal.,</p><p>2006; Geerling etal., 2010), and central amygdala and periaqueductal gray (Rosin etal., 2006).</p><p>The output of the retrotrapezoid is glutamatergic and affects respiration directly via projections</p><p>to the pre- Bötzinger complex, rVRG and cVRG, as well as to the cervical and thoracic spinal cord</p><p>(Rosin etal., 2006; Bochorishvili etal., 2012; Li etal., 2016; Silva etal., 2016a), and indirectly via</p><p>the Bötzinger complex, Kölliker- Fuse nucleus, lateral parafacial nucleus, NTS, and lateral and medial</p><p>parabrachial nucleus (Rosin etal., 2006; Abbott etal., 2009; Bochorishvili etal., 2012; Silva etal.,</p><p>2016a).</p><p>Nucleus of the solitary tract</p><p>The NTS houses respiratory chemoreceptors (Coates etal., 1993; Nattie and Li, 2002; Nattie and Li,</p><p>2008; Fu etal., 2017), and is the prime recipient of visceral input. Especially the caudal part of the NTS</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 15 of 67</p><p>receives direct input from pulmonary and cardiovascular baro-, chemo- and stretch receptors, as well</p><p>as from chemoreceptors in the carotid bodies (Miura and Reis, 1972; Sant’Ambrogio, 1982; Finley</p><p>and Katz, 1992; Mifflin, 1992; Lee and Yu, 2014; Zoccal etal., 2014; Mazzone and Undem, 2016;</p><p>Umans and Liberles, 2018; Zera etal., 2019; Suarez- Roca etal., 2021; Figure5A–B). These inputs</p><p>allow the NTS to contribute to metabolic homeostasis, affecting not only cardiorespiratory function,</p><p>but also food intake and digestion (Rinaman, 2010; Zoccal etal., 2014). The NTS is not essential for</p><p>inspiration, but NTS dysfunction impairs the response to hypercapnia (Berger and Cooney, 1982;</p><p>Speck and Feldman, 1982; Nattie and Li, 2008; Dean and Putnam, 2010), which could underlie</p><p>congenital central hypoventilation syndrome (Fu etal., 2017). The ventrolateral NTS is also known as</p><p>the dorsal respiratory group (Berger, 1977).</p><p>The NTS contains multiple types of respiratory neurons, some relate to inspiration, others to expi-</p><p>ration or are phase- independent (Backman etal., 1984; Ezure and Tanaka, 2000; Ho etal., 2001;</p><p>Kubin etal., 2006; Subramanian etal., 2007; Figure5D). Among these are neurons, located mainly</p><p>in the commissural and medial NTS, that respond to pulmonary irritant receptors, including RARs and</p><p>C- fibers mediating cough reflexes, and that are suppressed by the pump neurons (P- cells; Berger,</p><p>1977; Kubin etal., 2006; Canning etal., 2014; Mutolo, 2017; Farrell etal., 2020).</p><p>P- cells of the ventrolateral and other parts of the caudal NTS respond to SARs reporting airway</p><p>stretch (Kubin etal., 2006; Zoccal etal., 2014; Mazzone and Undem, 2016; Umans and Liberles,</p><p>2018). The firing rates of the P- cells relate to lung volume, possibly modulated by the respiratory</p><p>rhythm (Berger, 1977; Davies etal., 1987; Bonham and McCrimmon, 1990; Miyazaki etal., 1999).</p><p>Activation of these P- cells results in an inhibition of the rVRG (Ezure and Tanaka, 1996; Zheng etal.,</p><p>1998) and phrenic motor nucleus (Fedorko etal., 1983; Ellenberger etal., 1990b; Boulenguez</p><p>etal., 2007; Lois etal., 2009).</p><p>In addition, the NTS is involved in several other mechanisms controlling respiration. These entail a</p><p>strong and direct projection to the phrenic motor nucleus (Loewy and Burton, 1978; Fedorko etal.,</p><p>1983; Rikard- Bell etal., 1984; Dobbins and Feldman, 1994; Boulenguez etal., 2007; Lois etal.,</p><p>2009). Furthermore, P- cells of the intermediate NTS mediate the Hering- Breuer inspiratory reflex</p><p>that protects the lungs against overinflation (Breuer, 1868; Berger, 1977; Bonham and McCrimmon,</p><p>1990; Kubin etal., 2006; Lee and Yu, 2014; Chang etal., 2015; Nonomura etal., 2017; Umans</p><p>and Liberles, 2018).</p><p>In addition to the extensive visceral inputs, the caudal NTS also receives central input, in particular</p><p>from other regions of the NTS, lateral and paraventricular hypothalamus and central amygdala (Geer-</p><p>ling etal., 2010; Ruyle etal., 2019; Gasparini etal., 2020), but also from the pre- Bötzinger complex</p><p>(Tan etal., 2010; Koshiya etal., 2014; Yang and Feldman, 2018), Bötzinger complex (Merrill etal.,</p><p>1983; Fedorko and Merrill, 1984; Livingston and Berger, 1989; Ezure etal., 2003), rVRG (Yamada</p><p>etal., 1988; Ellenberger et al., 1990a; Zheng etal., 1998), Kölliker- Fuse nucleus (Fulwiler and</p><p>Saper, 1984; Song etal., 2012a; Geerling etal., 2017), retrotrapezoid nucleus (Rosin etal., 2006;</p><p>Bochorishvili et al., 2012), caudal raphe (Brust et al., 2014), bed nucleus of the stria terminalis</p><p>(Gasparini etal., 2020), lateral and medial parabrachial nuclei (Saper and Loewy, 1980; Herbert</p><p>etal., 1990; Bianchi etal., 1998), periaqueductal gray (Chen etal., 2022), spinal trigeminal nucleus</p><p>(Panneton etal., 2006), paratrigeminal nucleus (Saxon and Hopkins, 1998; de Sousa Buck etal.,</p><p>2001; McGovern etal., 2015b; Driessen etal., 2018), as well as from insular and infralimbic areas of</p><p>the cerebral cortex (Gasparini etal., 2020; Figure5C). Evidence for significant projections from the</p><p>cerebellum to the NTS is currently lacking (Teune etal., 2000; Gasparini etal., 2020).</p><p>As mentioned above, strong and direct projections from the NTS to the phrenic nucleus have</p><p>been reported, while the NTS targets also the upper airway motor nuclei (Loewy and Burton, 1978;</p><p>Norgren, 1978; Beckstead etal., 1980; Núñez- Abades etal., 1990; Hayakawa etal., 2000; Kawai,</p><p>2018; Guo et al., 2020). Other target areas are the pre- Bötzinger complex (Yang et al., 2020),</p><p>Bötzinger complex (Gang etal., 1995), PiCo (Oliveira etal., 2021), lateral parafacial nucleus (Bian-</p><p>cardi etal., 2021), cVRG (Loewy and Burton, 1978; Beckstead etal., 1980; Gerrits and Holstege,</p><p>1996), retrotrapezoid nucleus (Rosin etal., 2006; Lima etal., 2019b), locus coeruleus (McGovern</p><p>et</p><p>al., 2015b; Kawai, 2018), dorsal raphe (Peyron etal., 2018), lateral, paraventricular and dorso-</p><p>medial hypothalamus (King etal., 2012; McGovern etal., 2015b; Kawai, 2018), bed nucleus of the</p><p>stria terminalis and central amygdala (Shin etal., 2008; Bienkowski and Rinaman, 2013; McGovern</p><p>et al., 2015b; Ni et al., 2016; Kawai, 2018), lateral and medial parabrachial nuclei (Loewy and</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 16 of 67</p><p>Burton, 1978; Beckstead etal., 1980; Herbert etal., 1990; McGovern etal., 2015b; Hashimoto</p><p>etal., 2018; Kawai, 2018; Yu etal., 2022), periaqueductal gray (Herbert and Saper, 1992; Kawai,</p><p>2018), spinal trigeminal nucleus (Loewy and Burton, 1978; McGovern etal., 2015b), pedunculo-</p><p>pontine tegmental nucleus (PPTg) (Steininger etal., 1992), cerebellum (Batini etal., 1978; Somana</p><p>and Walberg, 1979b; Saigal etal., 1980b; Fu etal., 2011), and inferior olive (Loewy and Burton,</p><p>1978; McGovern etal., 2015b; Figure5C).</p><p>Locus coeruleus</p><p>The locus coeruleus has broad impact on brain activity, affecting among others attention, motivation,</p><p>memory, and the level of arousal through its widespread network of noradrenergic fibers (Schwarz</p><p>etal., 2015; Breton- Provencher and Sur, 2019; Chandler etal., 2019; Poe etal., 2020). The locus</p><p>coeruleus can also mediate sensory- evoked awakenings from sleep (Hayat etal., 2020) and has been</p><p>proposed to be a key center in coupling brain activity with the respiratory cycle (Melnychuk etal.,</p><p>2021).</p><p>Hypercapnia leads to increased activity in the locus coeruleus, which is an evolutionary conserved</p><p>phenomenon observed in amphibians and mammals (Elam et al., 1981; Pineda and Aghajanian,</p><p>1997; Biancardi etal., 2008; Santin and Hartzler, 2013; Quintero etal., 2017). This increase in</p><p>neural activity can lead to stronger basal ventilation (Hilaire etal., 2004; Liu etal., 2021b), although</p><p>this effect was not observed in all studies (Gargaglioni etal., 2010). The impact of the locus coeruleus</p><p>may therefore depend on behavioral or experimental conditions.</p><p>Stimulation of the locus coeruleus can modulate activity in the pre- Bötzinger complex via a direct</p><p>projection (Liu etal., 2021b). The locus coeruleus also targets many other brain regions with three</p><p>diverging pathways, with individual locus coeruleus neurons projecting to functionally related areas</p><p>(Szabadi, 2013; Schwarz etal., 2015; Poe etal., 2020). The ascending pathway targets the thal-</p><p>amus and cerebral cortex, but also the paraventricular and lateral hypothalamus, periaqueductal gray,</p><p>dorsal and caudal raphe nuclei, bed nucleus of the stria terminalis, and central amygdala (Jones and</p><p>Moore, 1977; Jones and Yang, 1985; Hermann etal., 1997; Ni etal., 2016; Borodovitsyna etal.,</p><p>2020). Other targets include the nuclei of the mesodiencephalic junction (MDJ) (Jones and Yang,</p><p>1985). The cerebellar pathway targets both the cerebellar nuclei and cortex (Olson and Fuxe, 1971;</p><p>Saigal etal., 1980a; Nagai etal., 1981; Room etal., 1981; Loughlin etal., 1986; Dietrichs, 1988;</p><p>Fu etal., 2011). The third, descending pathway targets the brainstem and spinal cord, including the</p><p>ambiguus, hypoglossal and facial nuclei, dorsal raphe, and the pedunculopontine tegmental nucleus</p><p>(Jones and Yang, 1985). The spinal projections are, as typical for locus coeruleus projections, wide-</p><p>spread and involve also the phrenic nucleus, without showing a specific concentration of terminals in</p><p>the latter (Bruinstroop etal., 2012).</p><p>In turn, the locus coeruleus receives widespread but relatively sparse projections from the cerebral</p><p>cortex, and denser projections from the hypothalamus, central amygdala, bed nucleus of the stria</p><p>terminalis, raphe nuclei, Kölliker- Fuse nucleus and adjacent parabrachial nuclei, and periaqueductal</p><p>gray (Luppi etal., 1995; Schwarz etal., 2015). There is also input from the pre- Bötzinger complex</p><p>(Yackle et al., 2017), NTS (McGovern et al., 2015b; Kawai, 2018), PPTg (Woolf and Butcher,</p><p>1989), and cerebellar nuclei, in addition to numerous direct projections from cerebellar Purkinje cells</p><p>(Schwarz etal., 2015).</p><p>Raphe nuclei</p><p>The raphe nuclei consist of clusters of neurons along the midline of the midbrain, pons and medulla.</p><p>Of these, the dorsal and caudal raphe both house CO2 chemoreceptors, and together form the main</p><p>source of serotonin in the respiratory system (Wang etal., 2001; Severson etal., 2003; Teran etal.,</p><p>2014; Figure6A). Disturbances in serotonin release have been linked to respiratory dysfunction in</p><p>Prader- Willi syndrome (Matarazzo etal., 2017) as well as to SIDS (Paterson etal., 2006; Kinney and</p><p>Haynes, 2019). The risk of the latter may be increased by prenatal exposure to nicotine that can later</p><p>cause impairments in serotonin release during hypercapnia (Avraam etal., 2020).</p><p>The dorsal raphe nucleus mediates the CO2 arousal reflex via its projection to the lateral parab-</p><p>rachial nucleus (Petrov et al., 1992; Smith et al., 2018; Kaur et al., 2020). Other projections,</p><p>sometimes involving collateral fibers, target predominantly forebrain regions, including the lateral</p><p>hypothalamic nucleus, bed nucleus of the stria terminalis, central amygdala, and vestibular nuclei</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 17 of 67</p><p>Complex spikesC D</p><p>Respiration</p><p>Simple spikes 3�/2</p><p>� 0</p><p>�/2</p><p>50</p><p>0</p><p>(Hz)</p><p>25</p><p>25 Hz</p><p>0</p><p>* *</p><p>-100</p><p>100</p><p>-200</p><p>Control Stim. Control Mutant</p><p>200E</p><p>�I</p><p>nt</p><p>er</p><p>va</p><p>l t</p><p>im</p><p>e</p><p>(m</p><p>s)</p><p>0.24</p><p>0.20</p><p>0.28</p><p>0.16</p><p>0.32F</p><p>C</p><p>V2</p><p>G H</p><p>I J</p><p>G H-J</p><p>A B</p><p>RMg</p><p>Caudal</p><p>raphe</p><p>Dorsal</p><p>raphe</p><p>Cerebellar</p><p>cortex</p><p>Cerebellar</p><p>nuclei</p><p>Rob</p><p>Rpa</p><p>Pre-</p><p>Bötzinger</p><p>complex</p><p>Phrenic</p><p>nucleus</p><p>Locus</p><p>coeruleus</p><p>CO2</p><p>Ambiguus</p><p>nucleus</p><p>Retro-</p><p>trapezoid</p><p>nucleus</p><p>CO2</p><p>Trigeminal</p><p>motor</p><p>nucleus</p><p>NTS</p><p>CO2</p><p>Hypo-</p><p>glossal</p><p>nucleus</p><p>Caudal</p><p>raphe</p><p>Other</p><p>5-HTNon-5-HT</p><p>CO2</p><p>Raphe</p><p>magnus</p><p>Egr2-Pet1</p><p>Raphe</p><p>obscurus</p><p>Tac-Pet1</p><p>CO2</p><p>CO2</p><p>Lateral</p><p>hypo-</p><p>thalamus</p><p>Vestibular</p><p>nuclei</p><p>Inferior</p><p>olive</p><p>Reticular</p><p>formation MDJ</p><p>Spinal</p><p>trigeminal</p><p>nucleus</p><p>Thoracic</p><p>spinal</p><p>cord</p><p>Facial</p><p>nucleus</p><p>Lateral</p><p>parafacial</p><p>nucleus</p><p>Kölliker-</p><p>Fuse</p><p>nucleus</p><p>PPTgMPBN</p><p>Basal</p><p>pons</p><p>Central</p><p>amygdala BNST</p><p>Peri-</p><p>aqueductal</p><p>gray</p><p>LPBN</p><p>Paraventri-</p><p>cular</p><p>hypothal.</p><p>Figure 6. Raphe nuclei and cerebellum. (A) The caudal raphe consists of the raphe magnus (RMg), the raphe obscurus (Rob) and the raphe pallidus</p><p>(Rpa). The cerebellum consists of the cerebellar cortex and the cerebellar nuclei. (B) Different populations of raphe neurons can have different projection</p><p>patterns. For example, Egr2- positive serotonergic neurons of RMg have intrinsic chemoreceptor properties and project mainly to other central</p><p>chemoreceptor areas. The downstream Tac- positive serotonergic neurons of Rob lack intrinsic chemoreceptor properties and project predominantly</p><p>to respiratory motor neurons. Other neurons of the caudal raphe, whether serotonergic or non- serotonergic, extend the caudal raphe projections to</p><p>further respiratory regions. These projections partially overlap with those of the dorsal raphe. Indicated are also the projections from the cerebellar</p><p>nuclei. Note that also the locus coeruleus receives cerebellar input via direct Purkinje cells projections. (C) At rest, Purkinje cells of the lateral cerebellum</p><p>can show modulation of their complex spike and simple spike frequency in relation to the respiratory cycle. This is illustrated with a representative</p><p>electrophysiological recording of a Purkinje cell in an awake mouse. Complex spikes are noted with a red dot on top of the trace. In this example,</p><p>Figure 6 continued on next page</p><p>https://doi.org/10.7554/eLife.83654</p><p>Review article Neuroscience</p><p>Krohn etal. eLife 2023;12:e83654. DOI: https://doi.org/10.7554/eLife.83654 18 of 67</p><p>(Vertes, 1991; Petrov etal., 1992; Halberstadt and Balaban, 2006; Vasudeva et</p>
  • Aula 04 e 05 - Crescimento microbiano
  • Produção de Carne Suína no Brasil
  • Processamento de Sucos - Classificação - DESAFIO
  • prazo de validade
  • Perguntas e respostas - D9013-2017
  • Questões bromatologia (revisão)
  • discursiva tecnologia de alimentos
  • Manual autismo Pag 42 e 43
  • Aulas_Praticas_Agropecuaria_-Tecnologia_de_Tratamento_de_Leite_e_Derivados_14_assinado
  • A IRONIA COMO FIO CONDUTOR DA OBRA KIERKEGAARDIANA
  • embrapa
  • copy3_of_AnuriodosProgramasdeControledeAlimentosdeOrigemAnimalVolume920232
  • A PRE LAVAGEM UTILIZANDO APENAS , OCORRE A REMOCAO DE 90% DOS RESIDUOS SOLUVEIS EM AGUA. TEMPERATURA IDEAL É POR VOLTA DPS 40 c, POIS EM TEMPE...
  • screva a sequência da fita replicada da fita de DNA, a seguir:T C G A G A A T C T C G A T TA G C U C U U A G A G C U A AU G C T C T T U G U G...
  • Questão 6/10 - Processos Químicos Industriais As etapas do processamento dos laticínios seguem em geral esta ordem: o leite cru chega nos laticínio...
  • Questão 07 (CESPE/UnB – Adaptada) A partir da metade dos anos 60 do século passado, no Brasil, a consciência de seu caráter de continente periféric...
  • create 3 4 5 6 7 8 9 10 [Laboratório Virtual - Métodos de Conservação dos Alimentos: Secagem de Frutas] O escurecimento enzimático ocorre devido à ...
  • e acordo com Malajovich (2011), a descoberta dos processos fermentativos foi um acontecimento que ocorreu várias vezes em momentos diferentes da hi...
  • Sobre a rotulagem de alimentos, avalie as assertivas: A lista de ingredientes é descrita seguindo a quantidade crescente de cada alimento. A go...
  • X 7 DE 10 QUESTÕES RESTANTES Pergunta 4 0,1 Pontos Leia o trecho a seguir: "O phylum Firmicutes inclui as bactérias gram-positivas com baixo teor d...
  • 9 DE 10 QUESTÕES RESTANTES Leia o trecho a seguir: "As perdas pós-colheita de frutas e hortaliças estão diretamente relacionadas ao manuseio, trans...
  • 10 DE 10 QUESTÕES RESTANTES Conteúdo do teste Pergunta 1 0,1 Pontos Leia o trecho a seguir: "Staphylococcus aureus é uma bactéria patogênica, cuja ...
  • a. Aditivos alimentares. b. Suplementos alimentares. c. Sintéticos alimentares. d. Adulterantes alimentares. e. Complementos alimentares.
  • como deve ser a refrigeracao dos alimentos?
  • Qual é a técnica de conservação que auxilia na redução do desperdício de alimentos em UAN? a) Refrigeração inadequada dos alimentos. b) Manter ali...
  • GEOTECNIA AMBIENTAL MARIA E. G. BOSCOV
  • QUESTIONARIO FISIOLOGIA EXERCICIO
elife-83654-v1 - Tecnologia de Alimentos (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Chrissy Homenick

Last Updated:

Views: 6267

Rating: 4.3 / 5 (74 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.